3.20.98 \(\int \frac {x^6}{(-b+a x^4)^{3/4} (b+a x^4)} \, dx\) [1998]

3.20.98.1 Optimal result
3.20.98.2 Mathematica [A] (verified)
3.20.98.3 Rubi [A] (verified)
3.20.98.4 Maple [A] (verified)
3.20.98.5 Fricas [C] (verification not implemented)
3.20.98.6 Sympy [F]
3.20.98.7 Maxima [F]
3.20.98.8 Giac [F]
3.20.98.9 Mupad [F(-1)]

3.20.98.1 Optimal result

Integrand size = 26, antiderivative size = 141 \[ \int \frac {x^6}{\left (-b+a x^4\right )^{3/4} \left (b+a x^4\right )} \, dx=-\frac {\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{-b+a x^4}}\right )}{2 a^{7/4}}+\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{-b+a x^4}}\right )}{2\ 2^{3/4} a^{7/4}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{-b+a x^4}}\right )}{2 a^{7/4}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{-b+a x^4}}\right )}{2\ 2^{3/4} a^{7/4}} \]

output
-1/2*arctan(a^(1/4)*x/(a*x^4-b)^(1/4))/a^(7/4)+1/4*arctan(2^(1/4)*a^(1/4)* 
x/(a*x^4-b)^(1/4))*2^(1/4)/a^(7/4)+1/2*arctanh(a^(1/4)*x/(a*x^4-b)^(1/4))/ 
a^(7/4)-1/4*arctanh(2^(1/4)*a^(1/4)*x/(a*x^4-b)^(1/4))*2^(1/4)/a^(7/4)
 
3.20.98.2 Mathematica [A] (verified)

Time = 0.68 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.86 \[ \int \frac {x^6}{\left (-b+a x^4\right )^{3/4} \left (b+a x^4\right )} \, dx=\frac {-2 \arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{-b+a x^4}}\right )+\sqrt [4]{2} \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{-b+a x^4}}\right )+2 \text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{-b+a x^4}}\right )-\sqrt [4]{2} \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{-b+a x^4}}\right )}{4 a^{7/4}} \]

input
Integrate[x^6/((-b + a*x^4)^(3/4)*(b + a*x^4)),x]
 
output
(-2*ArcTan[(a^(1/4)*x)/(-b + a*x^4)^(1/4)] + 2^(1/4)*ArcTan[(2^(1/4)*a^(1/ 
4)*x)/(-b + a*x^4)^(1/4)] + 2*ArcTanh[(a^(1/4)*x)/(-b + a*x^4)^(1/4)] - 2^ 
(1/4)*ArcTanh[(2^(1/4)*a^(1/4)*x)/(-b + a*x^4)^(1/4)])/(4*a^(7/4))
 
3.20.98.3 Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.08, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {996, 27, 981, 827, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^6}{\left (a x^4-b\right )^{3/4} \left (a x^4+b\right )} \, dx\)

\(\Big \downarrow \) 996

\(\displaystyle -b \int \frac {x^6}{b \left (a x^4-b\right )^{3/2} \left (1-\frac {2 a x^4}{a x^4-b}\right ) \left (1-\frac {a x^4}{a x^4-b}\right )}d\frac {x}{\sqrt [4]{a x^4-b}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\int \frac {x^6}{\left (a x^4-b\right )^{3/2} \left (1-\frac {2 a x^4}{a x^4-b}\right ) \left (1-\frac {a x^4}{a x^4-b}\right )}d\frac {x}{\sqrt [4]{a x^4-b}}\)

\(\Big \downarrow \) 981

\(\displaystyle \frac {\int \frac {x^2}{\sqrt {a x^4-b} \left (1-\frac {a x^4}{a x^4-b}\right )}d\frac {x}{\sqrt [4]{a x^4-b}}}{a}-\frac {\int \frac {x^2}{\sqrt {a x^4-b} \left (1-\frac {2 a x^4}{a x^4-b}\right )}d\frac {x}{\sqrt [4]{a x^4-b}}}{a}\)

\(\Big \downarrow \) 827

\(\displaystyle \frac {\frac {\int \frac {1}{1-\frac {\sqrt {a} x^2}{\sqrt {a x^4-b}}}d\frac {x}{\sqrt [4]{a x^4-b}}}{2 \sqrt {a}}-\frac {\int \frac {1}{\frac {\sqrt {a} x^2}{\sqrt {a x^4-b}}+1}d\frac {x}{\sqrt [4]{a x^4-b}}}{2 \sqrt {a}}}{a}-\frac {\frac {\int \frac {1}{1-\frac {\sqrt {2} \sqrt {a} x^2}{\sqrt {a x^4-b}}}d\frac {x}{\sqrt [4]{a x^4-b}}}{2 \sqrt {2} \sqrt {a}}-\frac {\int \frac {1}{\frac {\sqrt {2} \sqrt {a} x^2}{\sqrt {a x^4-b}}+1}d\frac {x}{\sqrt [4]{a x^4-b}}}{2 \sqrt {2} \sqrt {a}}}{a}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\int \frac {1}{1-\frac {\sqrt {a} x^2}{\sqrt {a x^4-b}}}d\frac {x}{\sqrt [4]{a x^4-b}}}{2 \sqrt {a}}-\frac {\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4-b}}\right )}{2 a^{3/4}}}{a}-\frac {\frac {\int \frac {1}{1-\frac {\sqrt {2} \sqrt {a} x^2}{\sqrt {a x^4-b}}}d\frac {x}{\sqrt [4]{a x^4-b}}}{2 \sqrt {2} \sqrt {a}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{a x^4-b}}\right )}{2\ 2^{3/4} a^{3/4}}}{a}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4-b}}\right )}{2 a^{3/4}}-\frac {\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4-b}}\right )}{2 a^{3/4}}}{a}-\frac {\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{a x^4-b}}\right )}{2\ 2^{3/4} a^{3/4}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{a} x}{\sqrt [4]{a x^4-b}}\right )}{2\ 2^{3/4} a^{3/4}}}{a}\)

input
Int[x^6/((-b + a*x^4)^(3/4)*(b + a*x^4)),x]
 
output
(-1/2*ArcTan[(a^(1/4)*x)/(-b + a*x^4)^(1/4)]/a^(3/4) + ArcTanh[(a^(1/4)*x) 
/(-b + a*x^4)^(1/4)]/(2*a^(3/4)))/a - (-1/2*ArcTan[(2^(1/4)*a^(1/4)*x)/(-b 
 + a*x^4)^(1/4)]/(2^(3/4)*a^(3/4)) + ArcTanh[(2^(1/4)*a^(1/4)*x)/(-b + a*x 
^4)^(1/4)]/(2*2^(3/4)*a^(3/4)))/a
 

3.20.98.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 981
Int[((e_.)*(x_))^(m_.)/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), 
 x_Symbol] :> Simp[(-a)*(e^n/(b*c - a*d))   Int[(e*x)^(m - n)/(a + b*x^n), 
x], x] + Simp[c*(e^n/(b*c - a*d))   Int[(e*x)^(m - n)/(c + d*x^n), x], x] / 
; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LeQ[n, 
 m, 2*n - 1]
 

rule 996
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.) 
, x_Symbol] :> With[{k = Denominator[p]}, Simp[k*(a^(p + (m + 1)/n)/n)   Su 
bst[Int[x^(k*((m + 1)/n) - 1)*((c - (b*c - a*d)*x^k)^q/(1 - b*x^k)^(p + q + 
 (m + 1)/n + 1)), x], x, x^(n/k)/(a + b*x^n)^(1/k)], x]] /; FreeQ[{a, b, c, 
 d}, x] && IGtQ[n, 0] && RationalQ[m, p] && IntegersQ[p + (m + 1)/n, q] && 
LtQ[-1, p, 0]
 
3.20.98.4 Maple [A] (verified)

Time = 0.76 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.07

method result size
pseudoelliptic \(\frac {-2 \,2^{\frac {1}{4}} \arctan \left (\frac {2^{\frac {3}{4}} \left (a \,x^{4}-b \right )^{\frac {1}{4}}}{2 a^{\frac {1}{4}} x}\right )-2^{\frac {1}{4}} \ln \left (\frac {-x 2^{\frac {1}{4}} a^{\frac {1}{4}}-\left (a \,x^{4}-b \right )^{\frac {1}{4}}}{x 2^{\frac {1}{4}} a^{\frac {1}{4}}-\left (a \,x^{4}-b \right )^{\frac {1}{4}}}\right )+2 \ln \left (\frac {a^{\frac {1}{4}} x +\left (a \,x^{4}-b \right )^{\frac {1}{4}}}{-a^{\frac {1}{4}} x +\left (a \,x^{4}-b \right )^{\frac {1}{4}}}\right )+4 \arctan \left (\frac {\left (a \,x^{4}-b \right )^{\frac {1}{4}}}{a^{\frac {1}{4}} x}\right )}{8 a^{\frac {7}{4}}}\) \(151\)

input
int(x^6/(a*x^4-b)^(3/4)/(a*x^4+b),x,method=_RETURNVERBOSE)
 
output
1/8*(-2*2^(1/4)*arctan(1/2*2^(3/4)/a^(1/4)/x*(a*x^4-b)^(1/4))-2^(1/4)*ln(( 
-x*2^(1/4)*a^(1/4)-(a*x^4-b)^(1/4))/(x*2^(1/4)*a^(1/4)-(a*x^4-b)^(1/4)))+2 
*ln((a^(1/4)*x+(a*x^4-b)^(1/4))/(-a^(1/4)*x+(a*x^4-b)^(1/4)))+4*arctan(1/a 
^(1/4)/x*(a*x^4-b)^(1/4)))/a^(7/4)
 
3.20.98.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.28 (sec) , antiderivative size = 309, normalized size of antiderivative = 2.19 \[ \int \frac {x^6}{\left (-b+a x^4\right )^{3/4} \left (b+a x^4\right )} \, dx=-\frac {1}{4} \, \left (\frac {1}{8}\right )^{\frac {1}{4}} \frac {1}{a^{7}}^{\frac {1}{4}} \log \left (\frac {2 \, \left (\frac {1}{8}\right )^{\frac {1}{4}} a^{2} \frac {1}{a^{7}}^{\frac {1}{4}} x + {\left (a x^{4} - b\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{4} \, \left (\frac {1}{8}\right )^{\frac {1}{4}} \frac {1}{a^{7}}^{\frac {1}{4}} \log \left (-\frac {2 \, \left (\frac {1}{8}\right )^{\frac {1}{4}} a^{2} \frac {1}{a^{7}}^{\frac {1}{4}} x - {\left (a x^{4} - b\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{4} i \, \left (\frac {1}{8}\right )^{\frac {1}{4}} \frac {1}{a^{7}}^{\frac {1}{4}} \log \left (\frac {2 i \, \left (\frac {1}{8}\right )^{\frac {1}{4}} a^{2} \frac {1}{a^{7}}^{\frac {1}{4}} x + {\left (a x^{4} - b\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{4} i \, \left (\frac {1}{8}\right )^{\frac {1}{4}} \frac {1}{a^{7}}^{\frac {1}{4}} \log \left (\frac {-2 i \, \left (\frac {1}{8}\right )^{\frac {1}{4}} a^{2} \frac {1}{a^{7}}^{\frac {1}{4}} x + {\left (a x^{4} - b\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{4} \, \frac {1}{a^{7}}^{\frac {1}{4}} \log \left (\frac {a^{2} \frac {1}{a^{7}}^{\frac {1}{4}} x + {\left (a x^{4} - b\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{4} \, \frac {1}{a^{7}}^{\frac {1}{4}} \log \left (-\frac {a^{2} \frac {1}{a^{7}}^{\frac {1}{4}} x - {\left (a x^{4} - b\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{4} i \, \frac {1}{a^{7}}^{\frac {1}{4}} \log \left (\frac {i \, a^{2} \frac {1}{a^{7}}^{\frac {1}{4}} x + {\left (a x^{4} - b\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{4} i \, \frac {1}{a^{7}}^{\frac {1}{4}} \log \left (\frac {-i \, a^{2} \frac {1}{a^{7}}^{\frac {1}{4}} x + {\left (a x^{4} - b\right )}^{\frac {1}{4}}}{x}\right ) \]

input
integrate(x^6/(a*x^4-b)^(3/4)/(a*x^4+b),x, algorithm="fricas")
 
output
-1/4*(1/8)^(1/4)*(a^(-7))^(1/4)*log((2*(1/8)^(1/4)*a^2*(a^(-7))^(1/4)*x + 
(a*x^4 - b)^(1/4))/x) + 1/4*(1/8)^(1/4)*(a^(-7))^(1/4)*log(-(2*(1/8)^(1/4) 
*a^2*(a^(-7))^(1/4)*x - (a*x^4 - b)^(1/4))/x) - 1/4*I*(1/8)^(1/4)*(a^(-7)) 
^(1/4)*log((2*I*(1/8)^(1/4)*a^2*(a^(-7))^(1/4)*x + (a*x^4 - b)^(1/4))/x) + 
 1/4*I*(1/8)^(1/4)*(a^(-7))^(1/4)*log((-2*I*(1/8)^(1/4)*a^2*(a^(-7))^(1/4) 
*x + (a*x^4 - b)^(1/4))/x) + 1/4*(a^(-7))^(1/4)*log((a^2*(a^(-7))^(1/4)*x 
+ (a*x^4 - b)^(1/4))/x) - 1/4*(a^(-7))^(1/4)*log(-(a^2*(a^(-7))^(1/4)*x - 
(a*x^4 - b)^(1/4))/x) + 1/4*I*(a^(-7))^(1/4)*log((I*a^2*(a^(-7))^(1/4)*x + 
 (a*x^4 - b)^(1/4))/x) - 1/4*I*(a^(-7))^(1/4)*log((-I*a^2*(a^(-7))^(1/4)*x 
 + (a*x^4 - b)^(1/4))/x)
 
3.20.98.6 Sympy [F]

\[ \int \frac {x^6}{\left (-b+a x^4\right )^{3/4} \left (b+a x^4\right )} \, dx=\int \frac {x^{6}}{\left (a x^{4} - b\right )^{\frac {3}{4}} \left (a x^{4} + b\right )}\, dx \]

input
integrate(x**6/(a*x**4-b)**(3/4)/(a*x**4+b),x)
 
output
Integral(x**6/((a*x**4 - b)**(3/4)*(a*x**4 + b)), x)
 
3.20.98.7 Maxima [F]

\[ \int \frac {x^6}{\left (-b+a x^4\right )^{3/4} \left (b+a x^4\right )} \, dx=\int { \frac {x^{6}}{{\left (a x^{4} + b\right )} {\left (a x^{4} - b\right )}^{\frac {3}{4}}} \,d x } \]

input
integrate(x^6/(a*x^4-b)^(3/4)/(a*x^4+b),x, algorithm="maxima")
 
output
integrate(x^6/((a*x^4 + b)*(a*x^4 - b)^(3/4)), x)
 
3.20.98.8 Giac [F]

\[ \int \frac {x^6}{\left (-b+a x^4\right )^{3/4} \left (b+a x^4\right )} \, dx=\int { \frac {x^{6}}{{\left (a x^{4} + b\right )} {\left (a x^{4} - b\right )}^{\frac {3}{4}}} \,d x } \]

input
integrate(x^6/(a*x^4-b)^(3/4)/(a*x^4+b),x, algorithm="giac")
 
output
integrate(x^6/((a*x^4 + b)*(a*x^4 - b)^(3/4)), x)
 
3.20.98.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^6}{\left (-b+a x^4\right )^{3/4} \left (b+a x^4\right )} \, dx=\int \frac {x^6}{\left (a\,x^4+b\right )\,{\left (a\,x^4-b\right )}^{3/4}} \,d x \]

input
int(x^6/((b + a*x^4)*(a*x^4 - b)^(3/4)),x)
 
output
int(x^6/((b + a*x^4)*(a*x^4 - b)^(3/4)), x)