3.21.43 \(\int \frac {(-1-x^4+2 x^6) \sqrt [3]{x-x^5+x^7}}{(1+x^2-x^4+x^6)^2} \, dx\) [2043]

3.21.43.1 Optimal result
3.21.43.2 Mathematica [A] (verified)
3.21.43.3 Rubi [F]
3.21.43.4 Maple [A] (verified)
3.21.43.5 Fricas [A] (verification not implemented)
3.21.43.6 Sympy [F(-1)]
3.21.43.7 Maxima [F]
3.21.43.8 Giac [F]
3.21.43.9 Mupad [F(-1)]

3.21.43.1 Optimal result

Integrand size = 42, antiderivative size = 146 \[ \int \frac {\left (-1-x^4+2 x^6\right ) \sqrt [3]{x-x^5+x^7}}{\left (1+x^2-x^4+x^6\right )^2} \, dx=-\frac {x \sqrt [3]{x-x^5+x^7}}{2 \left (1+x^2-x^4+x^6\right )}-\frac {\arctan \left (\frac {\sqrt {3} \sqrt [3]{x-x^5+x^7}}{-2 x+\sqrt [3]{x-x^5+x^7}}\right )}{2 \sqrt {3}}+\frac {1}{6} \log \left (x+\sqrt [3]{x-x^5+x^7}\right )-\frac {1}{12} \log \left (x^2-x \sqrt [3]{x-x^5+x^7}+\left (x-x^5+x^7\right )^{2/3}\right ) \]

output
-x*(x^7-x^5+x)^(1/3)/(2*x^6-2*x^4+2*x^2+2)-1/6*arctan(3^(1/2)*(x^7-x^5+x)^ 
(1/3)/(-2*x+(x^7-x^5+x)^(1/3)))*3^(1/2)+1/6*ln(x+(x^7-x^5+x)^(1/3))-1/12*l 
n(x^2-x*(x^7-x^5+x)^(1/3)+(x^7-x^5+x)^(2/3))
 
3.21.43.2 Mathematica [A] (verified)

Time = 3.27 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.36 \[ \int \frac {\left (-1-x^4+2 x^6\right ) \sqrt [3]{x-x^5+x^7}}{\left (1+x^2-x^4+x^6\right )^2} \, dx=\frac {\sqrt [3]{x-x^5+x^7} \left (-\frac {6 x^{4/3}}{1+x^2-x^4+x^6}+\frac {2 \sqrt {3} \arctan \left (\frac {\sqrt {3} x^{2/3}}{x^{2/3}-2 \sqrt [3]{1-x^4+x^6}}\right )}{\sqrt [3]{1-x^4+x^6}}+\frac {2 \log \left (x^{2/3}+\sqrt [3]{1-x^4+x^6}\right )}{\sqrt [3]{1-x^4+x^6}}-\frac {\log \left (x^{4/3}-x^{2/3} \sqrt [3]{1-x^4+x^6}+\left (1-x^4+x^6\right )^{2/3}\right )}{\sqrt [3]{1-x^4+x^6}}\right )}{12 \sqrt [3]{x}} \]

input
Integrate[((-1 - x^4 + 2*x^6)*(x - x^5 + x^7)^(1/3))/(1 + x^2 - x^4 + x^6) 
^2,x]
 
output
((x - x^5 + x^7)^(1/3)*((-6*x^(4/3))/(1 + x^2 - x^4 + x^6) + (2*Sqrt[3]*Ar 
cTan[(Sqrt[3]*x^(2/3))/(x^(2/3) - 2*(1 - x^4 + x^6)^(1/3))])/(1 - x^4 + x^ 
6)^(1/3) + (2*Log[x^(2/3) + (1 - x^4 + x^6)^(1/3)])/(1 - x^4 + x^6)^(1/3) 
- Log[x^(4/3) - x^(2/3)*(1 - x^4 + x^6)^(1/3) + (1 - x^4 + x^6)^(2/3)]/(1 
- x^4 + x^6)^(1/3)))/(12*x^(1/3))
 
3.21.43.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (2 x^6-x^4-1\right ) \sqrt [3]{x^7-x^5+x}}{\left (x^6-x^4+x^2+1\right )^2} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt [3]{x^7-x^5+x} \int -\frac {\sqrt [3]{x} \left (-2 x^6+x^4+1\right ) \sqrt [3]{x^6-x^4+1}}{\left (x^6-x^4+x^2+1\right )^2}dx}{\sqrt [3]{x} \sqrt [3]{x^6-x^4+1}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt [3]{x^7-x^5+x} \int \frac {\sqrt [3]{x} \left (-2 x^6+x^4+1\right ) \sqrt [3]{x^6-x^4+1}}{\left (x^6-x^4+x^2+1\right )^2}dx}{\sqrt [3]{x} \sqrt [3]{x^6-x^4+1}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {3 \sqrt [3]{x^7-x^5+x} \int \frac {x \left (-2 x^6+x^4+1\right ) \sqrt [3]{x^6-x^4+1}}{\left (x^6-x^4+x^2+1\right )^2}d\sqrt [3]{x}}{\sqrt [3]{x} \sqrt [3]{x^6-x^4+1}}\)

\(\Big \downarrow \) 7283

\(\displaystyle -\frac {3 \sqrt [3]{x^7-x^5+x} \int \frac {x^{2/3} \left (-2 x^3+x^2+1\right ) \sqrt [3]{x^3-x^2+1}}{\left (x^3-x^2+x+1\right )^2}dx^{2/3}}{2 \sqrt [3]{x} \sqrt [3]{x^6-x^4+1}}\)

\(\Big \downarrow \) 7293

\(\displaystyle -\frac {3 \sqrt [3]{x^7-x^5+x} \int \left (\frac {x^{2/3} \left (-x^2+2 x+3\right ) \sqrt [3]{x^3-x^2+1}}{\left (x^3-x^2+x+1\right )^2}-\frac {2 x^{2/3} \sqrt [3]{x^3-x^2+1}}{x^3-x^2+x+1}\right )dx^{2/3}}{2 \sqrt [3]{x} \sqrt [3]{x^6-x^4+1}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {3 \sqrt [3]{x^7-x^5+x} \left (3 \int \frac {x^{2/3} \sqrt [3]{x^3-x^2+1}}{\left (x^3-x^2+x+1\right )^2}dx^{2/3}+2 \int \frac {x^{4/3} \sqrt [3]{x^3-x^2+1}}{\left (x^3-x^2+x+1\right )^2}dx^{2/3}-\int \frac {x^{7/3} \sqrt [3]{x^3-x^2+1}}{\left (x^3-x^2+x+1\right )^2}dx^{2/3}-2 \int \frac {x^{2/3} \sqrt [3]{x^3-x^2+1}}{x^3-x^2+x+1}dx^{2/3}\right )}{2 \sqrt [3]{x} \sqrt [3]{x^6-x^4+1}}\)

input
Int[((-1 - x^4 + 2*x^6)*(x - x^5 + x^7)^(1/3))/(1 + x^2 - x^4 + x^6)^2,x]
 
output
$Aborted
 

3.21.43.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7283
Int[(u_)*(x_)^(m_.), x_Symbol] :> With[{lst = PowerVariableExpn[u, m + 1, x 
]}, Simp[1/lst[[2]]   Subst[Int[NormalizeIntegrand[Simplify[lst[[1]]/x], x] 
, x], x, (lst[[3]]*x)^lst[[2]]], x] /;  !FalseQ[lst] && NeQ[lst[[2]], m + 1 
]] /; IntegerQ[m] && NeQ[m, -1] && NonsumQ[u] && (GtQ[m, 0] ||  !AlgebraicF 
unctionQ[u, x])
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.21.43.4 Maple [A] (verified)

Time = 12.06 (sec) , antiderivative size = 203, normalized size of antiderivative = 1.39

method result size
pseudoelliptic \(-\frac {\left (\left (-2 x^{6}+2 x^{4}-2 x^{2}-2\right ) \ln \left (\frac {x +{\left (x \left (x^{6}-x^{4}+1\right )\right )}^{\frac {1}{3}}}{x}\right )+6 {\left (x \left (x^{6}-x^{4}+1\right )\right )}^{\frac {1}{3}} x +\left (x^{6}-x^{4}+x^{2}+1\right ) \left (2 \arctan \left (\frac {\left (-2 {\left (x \left (x^{6}-x^{4}+1\right )\right )}^{\frac {1}{3}}+x \right ) \sqrt {3}}{3 x}\right ) \sqrt {3}+\ln \left (\frac {{\left (x \left (x^{6}-x^{4}+1\right )\right )}^{\frac {2}{3}}-{\left (x \left (x^{6}-x^{4}+1\right )\right )}^{\frac {1}{3}} x +x^{2}}{x^{2}}\right )\right )\right ) x}{12 \left (x +{\left (x \left (x^{6}-x^{4}+1\right )\right )}^{\frac {1}{3}}\right ) \left ({\left (x \left (x^{6}-x^{4}+1\right )\right )}^{\frac {2}{3}}+x \left (x -{\left (x \left (x^{6}-x^{4}+1\right )\right )}^{\frac {1}{3}}\right )\right )}\) \(203\)
trager \(\text {Expression too large to display}\) \(739\)
risch \(\text {Expression too large to display}\) \(1528\)

input
int((2*x^6-x^4-1)*(x^7-x^5+x)^(1/3)/(x^6-x^4+x^2+1)^2,x,method=_RETURNVERB 
OSE)
 
output
-1/12*((-2*x^6+2*x^4-2*x^2-2)*ln((x+(x*(x^6-x^4+1))^(1/3))/x)+6*(x*(x^6-x^ 
4+1))^(1/3)*x+(x^6-x^4+x^2+1)*(2*arctan(1/3*(-2*(x*(x^6-x^4+1))^(1/3)+x)*3 
^(1/2)/x)*3^(1/2)+ln(((x*(x^6-x^4+1))^(2/3)-(x*(x^6-x^4+1))^(1/3)*x+x^2)/x 
^2)))*x/(x+(x*(x^6-x^4+1))^(1/3))/((x*(x^6-x^4+1))^(2/3)+x*(x-(x*(x^6-x^4+ 
1))^(1/3)))
 
3.21.43.5 Fricas [A] (verification not implemented)

Time = 1.80 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.36 \[ \int \frac {\left (-1-x^4+2 x^6\right ) \sqrt [3]{x-x^5+x^7}}{\left (1+x^2-x^4+x^6\right )^2} \, dx=-\frac {2 \, \sqrt {3} {\left (x^{6} - x^{4} + x^{2} + 1\right )} \arctan \left (-\frac {2 \, \sqrt {3} {\left (x^{7} - x^{5} + x\right )}^{\frac {1}{3}} x + \sqrt {3} {\left (x^{6} - x^{4} - x^{2} + 1\right )} - 2 \, \sqrt {3} {\left (x^{7} - x^{5} + x\right )}^{\frac {2}{3}}}{x^{6} - x^{4} + x^{2} + 1}\right ) - {\left (x^{6} - x^{4} + x^{2} + 1\right )} \log \left (\frac {x^{6} - x^{4} + x^{2} + 3 \, {\left (x^{7} - x^{5} + x\right )}^{\frac {1}{3}} x + 3 \, {\left (x^{7} - x^{5} + x\right )}^{\frac {2}{3}} + 1}{x^{6} - x^{4} + x^{2} + 1}\right ) + 6 \, {\left (x^{7} - x^{5} + x\right )}^{\frac {1}{3}} x}{12 \, {\left (x^{6} - x^{4} + x^{2} + 1\right )}} \]

input
integrate((2*x^6-x^4-1)*(x^7-x^5+x)^(1/3)/(x^6-x^4+x^2+1)^2,x, algorithm=" 
fricas")
 
output
-1/12*(2*sqrt(3)*(x^6 - x^4 + x^2 + 1)*arctan(-(2*sqrt(3)*(x^7 - x^5 + x)^ 
(1/3)*x + sqrt(3)*(x^6 - x^4 - x^2 + 1) - 2*sqrt(3)*(x^7 - x^5 + x)^(2/3)) 
/(x^6 - x^4 + x^2 + 1)) - (x^6 - x^4 + x^2 + 1)*log((x^6 - x^4 + x^2 + 3*( 
x^7 - x^5 + x)^(1/3)*x + 3*(x^7 - x^5 + x)^(2/3) + 1)/(x^6 - x^4 + x^2 + 1 
)) + 6*(x^7 - x^5 + x)^(1/3)*x)/(x^6 - x^4 + x^2 + 1)
 
3.21.43.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\left (-1-x^4+2 x^6\right ) \sqrt [3]{x-x^5+x^7}}{\left (1+x^2-x^4+x^6\right )^2} \, dx=\text {Timed out} \]

input
integrate((2*x**6-x**4-1)*(x**7-x**5+x)**(1/3)/(x**6-x**4+x**2+1)**2,x)
 
output
Timed out
 
3.21.43.7 Maxima [F]

\[ \int \frac {\left (-1-x^4+2 x^6\right ) \sqrt [3]{x-x^5+x^7}}{\left (1+x^2-x^4+x^6\right )^2} \, dx=\int { \frac {{\left (x^{7} - x^{5} + x\right )}^{\frac {1}{3}} {\left (2 \, x^{6} - x^{4} - 1\right )}}{{\left (x^{6} - x^{4} + x^{2} + 1\right )}^{2}} \,d x } \]

input
integrate((2*x^6-x^4-1)*(x^7-x^5+x)^(1/3)/(x^6-x^4+x^2+1)^2,x, algorithm=" 
maxima")
 
output
integrate((x^7 - x^5 + x)^(1/3)*(2*x^6 - x^4 - 1)/(x^6 - x^4 + x^2 + 1)^2, 
 x)
 
3.21.43.8 Giac [F]

\[ \int \frac {\left (-1-x^4+2 x^6\right ) \sqrt [3]{x-x^5+x^7}}{\left (1+x^2-x^4+x^6\right )^2} \, dx=\int { \frac {{\left (x^{7} - x^{5} + x\right )}^{\frac {1}{3}} {\left (2 \, x^{6} - x^{4} - 1\right )}}{{\left (x^{6} - x^{4} + x^{2} + 1\right )}^{2}} \,d x } \]

input
integrate((2*x^6-x^4-1)*(x^7-x^5+x)^(1/3)/(x^6-x^4+x^2+1)^2,x, algorithm=" 
giac")
 
output
integrate((x^7 - x^5 + x)^(1/3)*(2*x^6 - x^4 - 1)/(x^6 - x^4 + x^2 + 1)^2, 
 x)
 
3.21.43.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (-1-x^4+2 x^6\right ) \sqrt [3]{x-x^5+x^7}}{\left (1+x^2-x^4+x^6\right )^2} \, dx=\int -\frac {\left (-2\,x^6+x^4+1\right )\,{\left (x^7-x^5+x\right )}^{1/3}}{{\left (x^6-x^4+x^2+1\right )}^2} \,d x \]

input
int(-((x^4 - 2*x^6 + 1)*(x - x^5 + x^7)^(1/3))/(x^2 - x^4 + x^6 + 1)^2,x)
 
output
int(-((x^4 - 2*x^6 + 1)*(x - x^5 + x^7)^(1/3))/(x^2 - x^4 + x^6 + 1)^2, x)