3.21.54 \(\int \frac {x^2 (4+7 x^3)}{\sqrt [3]{x+x^4} (-1+x^4+x^7)} \, dx\) [2054]

3.21.54.1 Optimal result
3.21.54.2 Mathematica [F]
3.21.54.3 Rubi [F]
3.21.54.4 Maple [C] (verified)
3.21.54.5 Fricas [A] (verification not implemented)
3.21.54.6 Sympy [F]
3.21.54.7 Maxima [F]
3.21.54.8 Giac [F]
3.21.54.9 Mupad [F(-1)]

3.21.54.1 Optimal result

Integrand size = 30, antiderivative size = 147 \[ \int \frac {x^2 \left (4+7 x^3\right )}{\sqrt [3]{x+x^4} \left (-1+x^4+x^7\right )} \, dx=-\sqrt {3} \arctan \left (\frac {3 \sqrt {3} x \sqrt [3]{x+x^4}-3 x^2 \sqrt [3]{x+x^4}}{-6+2 \sqrt {3} x-3 x \sqrt [3]{x+x^4}+\sqrt {3} x^2 \sqrt [3]{x+x^4}}\right )+2 \text {arctanh}\left (1-2 x \sqrt [3]{x+x^4}\right )-\text {arctanh}\left (\frac {1+x \sqrt [3]{x+x^4}}{1+x \sqrt [3]{x+x^4}+2 x^2 \left (x+x^4\right )^{2/3}}\right ) \]

output
-3^(1/2)*arctan((3*3^(1/2)*x*(x^4+x)^(1/3)-3*x^2*(x^4+x)^(1/3))/(-6+2*x*3^ 
(1/2)-3*x*(x^4+x)^(1/3)+3^(1/2)*x^2*(x^4+x)^(1/3)))-2*arctanh(-1+2*x*(x^4+ 
x)^(1/3))-arctanh((1+x*(x^4+x)^(1/3))/(1+x*(x^4+x)^(1/3)+2*x^2*(x^4+x)^(2/ 
3)))
 
3.21.54.2 Mathematica [F]

\[ \int \frac {x^2 \left (4+7 x^3\right )}{\sqrt [3]{x+x^4} \left (-1+x^4+x^7\right )} \, dx=\int \frac {x^2 \left (4+7 x^3\right )}{\sqrt [3]{x+x^4} \left (-1+x^4+x^7\right )} \, dx \]

input
Integrate[(x^2*(4 + 7*x^3))/((x + x^4)^(1/3)*(-1 + x^4 + x^7)),x]
 
output
Integrate[(x^2*(4 + 7*x^3))/((x + x^4)^(1/3)*(-1 + x^4 + x^7)), x]
 
3.21.54.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \left (7 x^3+4\right )}{\sqrt [3]{x^4+x} \left (x^7+x^4-1\right )} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt [3]{x} \sqrt [3]{x^3+1} \int -\frac {x^{5/3} \left (7 x^3+4\right )}{\sqrt [3]{x^3+1} \left (-x^7-x^4+1\right )}dx}{\sqrt [3]{x^4+x}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt [3]{x} \sqrt [3]{x^3+1} \int \frac {x^{5/3} \left (7 x^3+4\right )}{\sqrt [3]{x^3+1} \left (-x^7-x^4+1\right )}dx}{\sqrt [3]{x^4+x}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {3 \sqrt [3]{x} \sqrt [3]{x^3+1} \int \frac {x^{7/3} \left (7 x^3+4\right )}{\sqrt [3]{x^3+1} \left (-x^7-x^4+1\right )}d\sqrt [3]{x}}{\sqrt [3]{x^4+x}}\)

\(\Big \downarrow \) 7293

\(\displaystyle -\frac {3 \sqrt [3]{x} \sqrt [3]{x^3+1} \int \left (-\frac {7 x^{16/3}}{\sqrt [3]{x^3+1} \left (x^7+x^4-1\right )}-\frac {4 x^{7/3}}{\sqrt [3]{x^3+1} \left (x^7+x^4-1\right )}\right )d\sqrt [3]{x}}{\sqrt [3]{x^4+x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {3 \sqrt [3]{x} \sqrt [3]{x^3+1} \left (-4 \int \frac {x^{7/3}}{\sqrt [3]{x^3+1} \left (x^7+x^4-1\right )}d\sqrt [3]{x}-7 \int \frac {x^{16/3}}{\sqrt [3]{x^3+1} \left (x^7+x^4-1\right )}d\sqrt [3]{x}\right )}{\sqrt [3]{x^4+x}}\)

input
Int[(x^2*(4 + 7*x^3))/((x + x^4)^(1/3)*(-1 + x^4 + x^7)),x]
 
output
$Aborted
 

3.21.54.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.21.54.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 6.57 (sec) , antiderivative size = 485, normalized size of antiderivative = 3.30

method result size
trager \(\operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) \ln \left (\frac {-25169216 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )^{2} x^{7}-17080755 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) x^{7}+134838374 x^{7}-25169216 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )^{2} x^{4}+168096051 \left (x^{4}+x \right )^{\frac {2}{3}} \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) x^{2}-17080755 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) x^{4}+311926719 x^{2} \left (x^{4}+x \right )^{\frac {2}{3}}+134838374 x^{4}+168096051 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) \left (x^{4}+x \right )^{\frac {1}{3}} x +311926719 x \left (x^{4}+x \right )^{\frac {1}{3}}+50338432 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )^{2}+210346022 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )+202257561}{x^{7}+x^{4}-1}\right )-\ln \left (-\frac {25169216 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )^{2} x^{7}+33257677 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) x^{7}-126749913 x^{7}+25169216 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )^{2} x^{4}+168096051 \left (x^{4}+x \right )^{\frac {2}{3}} \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) x^{2}+33257677 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) x^{4}-143830668 x^{2} \left (x^{4}+x \right )^{\frac {2}{3}}-126749913 x^{4}+168096051 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) \left (x^{4}+x \right )^{\frac {1}{3}} x -143830668 x \left (x^{4}+x \right )^{\frac {1}{3}}-50338432 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )^{2}+109669158 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )-42249971}{x^{7}+x^{4}-1}\right ) \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )-\ln \left (-\frac {25169216 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )^{2} x^{7}+33257677 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) x^{7}-126749913 x^{7}+25169216 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )^{2} x^{4}+168096051 \left (x^{4}+x \right )^{\frac {2}{3}} \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) x^{2}+33257677 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) x^{4}-143830668 x^{2} \left (x^{4}+x \right )^{\frac {2}{3}}-126749913 x^{4}+168096051 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right ) \left (x^{4}+x \right )^{\frac {1}{3}} x -143830668 x \left (x^{4}+x \right )^{\frac {1}{3}}-50338432 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )^{2}+109669158 \operatorname {RootOf}\left (\textit {\_Z}^{2}+\textit {\_Z} +1\right )-42249971}{x^{7}+x^{4}-1}\right )\) \(485\)

input
int(x^2*(7*x^3+4)/(x^4+x)^(1/3)/(x^7+x^4-1),x,method=_RETURNVERBOSE)
 
output
RootOf(_Z^2+_Z+1)*ln((-25169216*RootOf(_Z^2+_Z+1)^2*x^7-17080755*RootOf(_Z 
^2+_Z+1)*x^7+134838374*x^7-25169216*RootOf(_Z^2+_Z+1)^2*x^4+168096051*(x^4 
+x)^(2/3)*RootOf(_Z^2+_Z+1)*x^2-17080755*RootOf(_Z^2+_Z+1)*x^4+311926719*x 
^2*(x^4+x)^(2/3)+134838374*x^4+168096051*RootOf(_Z^2+_Z+1)*(x^4+x)^(1/3)*x 
+311926719*x*(x^4+x)^(1/3)+50338432*RootOf(_Z^2+_Z+1)^2+210346022*RootOf(_ 
Z^2+_Z+1)+202257561)/(x^7+x^4-1))-ln(-(25169216*RootOf(_Z^2+_Z+1)^2*x^7+33 
257677*RootOf(_Z^2+_Z+1)*x^7-126749913*x^7+25169216*RootOf(_Z^2+_Z+1)^2*x^ 
4+168096051*(x^4+x)^(2/3)*RootOf(_Z^2+_Z+1)*x^2+33257677*RootOf(_Z^2+_Z+1) 
*x^4-143830668*x^2*(x^4+x)^(2/3)-126749913*x^4+168096051*RootOf(_Z^2+_Z+1) 
*(x^4+x)^(1/3)*x-143830668*x*(x^4+x)^(1/3)-50338432*RootOf(_Z^2+_Z+1)^2+10 
9669158*RootOf(_Z^2+_Z+1)-42249971)/(x^7+x^4-1))*RootOf(_Z^2+_Z+1)-ln(-(25 
169216*RootOf(_Z^2+_Z+1)^2*x^7+33257677*RootOf(_Z^2+_Z+1)*x^7-126749913*x^ 
7+25169216*RootOf(_Z^2+_Z+1)^2*x^4+168096051*(x^4+x)^(2/3)*RootOf(_Z^2+_Z+ 
1)*x^2+33257677*RootOf(_Z^2+_Z+1)*x^4-143830668*x^2*(x^4+x)^(2/3)-12674991 
3*x^4+168096051*RootOf(_Z^2+_Z+1)*(x^4+x)^(1/3)*x-143830668*x*(x^4+x)^(1/3 
)-50338432*RootOf(_Z^2+_Z+1)^2+109669158*RootOf(_Z^2+_Z+1)-42249971)/(x^7+ 
x^4-1))
 
3.21.54.5 Fricas [A] (verification not implemented)

Time = 2.03 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.70 \[ \int \frac {x^2 \left (4+7 x^3\right )}{\sqrt [3]{x+x^4} \left (-1+x^4+x^7\right )} \, dx=-\sqrt {3} \arctan \left (\frac {2 \, \sqrt {3} {\left (x^{4} + x\right )}^{\frac {2}{3}} x^{2} - 4 \, \sqrt {3} {\left (x^{4} + x\right )}^{\frac {1}{3}} x - \sqrt {3} {\left (x^{7} + x^{4}\right )}}{x^{7} + x^{4} + 8}\right ) + \frac {1}{2} \, \log \left (\frac {x^{7} + x^{4} - 3 \, {\left (x^{4} + x\right )}^{\frac {2}{3}} x^{2} + 3 \, {\left (x^{4} + x\right )}^{\frac {1}{3}} x - 1}{x^{7} + x^{4} - 1}\right ) \]

input
integrate(x^2*(7*x^3+4)/(x^4+x)^(1/3)/(x^7+x^4-1),x, algorithm="fricas")
 
output
-sqrt(3)*arctan((2*sqrt(3)*(x^4 + x)^(2/3)*x^2 - 4*sqrt(3)*(x^4 + x)^(1/3) 
*x - sqrt(3)*(x^7 + x^4))/(x^7 + x^4 + 8)) + 1/2*log((x^7 + x^4 - 3*(x^4 + 
 x)^(2/3)*x^2 + 3*(x^4 + x)^(1/3)*x - 1)/(x^7 + x^4 - 1))
 
3.21.54.6 Sympy [F]

\[ \int \frac {x^2 \left (4+7 x^3\right )}{\sqrt [3]{x+x^4} \left (-1+x^4+x^7\right )} \, dx=\int \frac {x^{2} \cdot \left (7 x^{3} + 4\right )}{\sqrt [3]{x \left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (x^{7} + x^{4} - 1\right )}\, dx \]

input
integrate(x**2*(7*x**3+4)/(x**4+x)**(1/3)/(x**7+x**4-1),x)
 
output
Integral(x**2*(7*x**3 + 4)/((x*(x + 1)*(x**2 - x + 1))**(1/3)*(x**7 + x**4 
 - 1)), x)
 
3.21.54.7 Maxima [F]

\[ \int \frac {x^2 \left (4+7 x^3\right )}{\sqrt [3]{x+x^4} \left (-1+x^4+x^7\right )} \, dx=\int { \frac {{\left (7 \, x^{3} + 4\right )} x^{2}}{{\left (x^{7} + x^{4} - 1\right )} {\left (x^{4} + x\right )}^{\frac {1}{3}}} \,d x } \]

input
integrate(x^2*(7*x^3+4)/(x^4+x)^(1/3)/(x^7+x^4-1),x, algorithm="maxima")
 
output
integrate((7*x^3 + 4)*x^2/((x^7 + x^4 - 1)*(x^4 + x)^(1/3)), x)
 
3.21.54.8 Giac [F]

\[ \int \frac {x^2 \left (4+7 x^3\right )}{\sqrt [3]{x+x^4} \left (-1+x^4+x^7\right )} \, dx=\int { \frac {{\left (7 \, x^{3} + 4\right )} x^{2}}{{\left (x^{7} + x^{4} - 1\right )} {\left (x^{4} + x\right )}^{\frac {1}{3}}} \,d x } \]

input
integrate(x^2*(7*x^3+4)/(x^4+x)^(1/3)/(x^7+x^4-1),x, algorithm="giac")
 
output
integrate((7*x^3 + 4)*x^2/((x^7 + x^4 - 1)*(x^4 + x)^(1/3)), x)
 
3.21.54.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 \left (4+7 x^3\right )}{\sqrt [3]{x+x^4} \left (-1+x^4+x^7\right )} \, dx=\int \frac {x^2\,\left (7\,x^3+4\right )}{{\left (x^4+x\right )}^{1/3}\,\left (x^7+x^4-1\right )} \,d x \]

input
int((x^2*(7*x^3 + 4))/((x + x^4)^(1/3)*(x^4 + x^7 - 1)),x)
 
output
int((x^2*(7*x^3 + 4))/((x + x^4)^(1/3)*(x^4 + x^7 - 1)), x)