3.21.99 \(\int \frac {(1+x^8)^{3/4}}{-1+x^8} \, dx\) [2099]

3.21.99.1 Optimal result
3.21.99.2 Mathematica [A] (verified)
3.21.99.3 Rubi [C] (verified)
3.21.99.4 Maple [A] (verified)
3.21.99.5 Fricas [C] (verification not implemented)
3.21.99.6 Sympy [F]
3.21.99.7 Maxima [F]
3.21.99.8 Giac [F]
3.21.99.9 Mupad [F(-1)]

3.21.99.1 Optimal result

Integrand size = 17, antiderivative size = 152 \[ \int \frac {\left (1+x^8\right )^{3/4}}{-1+x^8} \, dx=-\frac {\arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{1+x^8}}\right )}{4 \sqrt [4]{2}}+\frac {\arctan \left (\frac {2^{3/4} x \sqrt [4]{1+x^8}}{\sqrt {2} x^2-\sqrt {1+x^8}}\right )}{4\ 2^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} x}{\sqrt [4]{1+x^8}}\right )}{4 \sqrt [4]{2}}-\frac {\text {arctanh}\left (\frac {2 \sqrt [4]{2} x \sqrt [4]{1+x^8}}{2 x^2+\sqrt {2} \sqrt {1+x^8}}\right )}{4\ 2^{3/4}} \]

output
-1/8*arctan(2^(1/4)*x/(x^8+1)^(1/4))*2^(3/4)+1/8*arctan(2^(3/4)*x*(x^8+1)^ 
(1/4)/(2^(1/2)*x^2-(x^8+1)^(1/2)))*2^(1/4)-1/8*arctanh(2^(1/4)*x/(x^8+1)^( 
1/4))*2^(3/4)-1/8*arctanh(2*2^(1/4)*x*(x^8+1)^(1/4)/(2*x^2+2^(1/2)*(x^8+1) 
^(1/2)))*2^(1/4)
 
3.21.99.2 Mathematica [A] (verified)

Time = 0.48 (sec) , antiderivative size = 139, normalized size of antiderivative = 0.91 \[ \int \frac {\left (1+x^8\right )^{3/4}}{-1+x^8} \, dx=-\frac {\sqrt {2} \arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{1+x^8}}\right )-\arctan \left (\frac {2^{3/4} x \sqrt [4]{1+x^8}}{\sqrt {2} x^2-\sqrt {1+x^8}}\right )+\sqrt {2} \text {arctanh}\left (\frac {\sqrt [4]{2} x}{\sqrt [4]{1+x^8}}\right )+\text {arctanh}\left (\frac {2 \sqrt [4]{2} x \sqrt [4]{1+x^8}}{2 x^2+\sqrt {2} \sqrt {1+x^8}}\right )}{4\ 2^{3/4}} \]

input
Integrate[(1 + x^8)^(3/4)/(-1 + x^8),x]
 
output
-1/4*(Sqrt[2]*ArcTan[(2^(1/4)*x)/(1 + x^8)^(1/4)] - ArcTan[(2^(3/4)*x*(1 + 
 x^8)^(1/4))/(Sqrt[2]*x^2 - Sqrt[1 + x^8])] + Sqrt[2]*ArcTanh[(2^(1/4)*x)/ 
(1 + x^8)^(1/4)] + ArcTanh[(2*2^(1/4)*x*(1 + x^8)^(1/4))/(2*x^2 + Sqrt[2]* 
Sqrt[1 + x^8])])/2^(3/4)
 
3.21.99.3 Rubi [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 0.15 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.14, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {936}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^8+1\right )^{3/4}}{x^8-1} \, dx\)

\(\Big \downarrow \) 936

\(\displaystyle -x \operatorname {AppellF1}\left (\frac {1}{8},1,-\frac {3}{4},\frac {9}{8},x^8,-x^8\right )\)

input
Int[(1 + x^8)^(3/4)/(-1 + x^8),x]
 
output
-(x*AppellF1[1/8, 1, -3/4, 9/8, x^8, -x^8])
 

3.21.99.3.1 Defintions of rubi rules used

rule 936
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Simp[a^p*c^q*x*AppellF1[1/n, -p, -q, 1 + 1/n, (-b)*(x^n/a), (-d)*(x^n/c) 
], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] 
 && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 
3.21.99.4 Maple [A] (verified)

Time = 24.62 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.09

method result size
pseudoelliptic \(\frac {2^{\frac {1}{4}} \left (2 \arctan \left (\frac {\left (x^{8}+1\right )^{\frac {1}{4}} 2^{\frac {3}{4}}}{2 x}\right ) \sqrt {2}-\ln \left (\frac {2^{\frac {1}{4}} x +\left (x^{8}+1\right )^{\frac {1}{4}}}{-2^{\frac {1}{4}} x +\left (x^{8}+1\right )^{\frac {1}{4}}}\right ) \sqrt {2}+\ln \left (\frac {-\left (x^{8}+1\right )^{\frac {1}{4}} 2^{\frac {3}{4}} x +\sqrt {2}\, x^{2}+\sqrt {x^{8}+1}}{\left (x^{8}+1\right )^{\frac {1}{4}} 2^{\frac {3}{4}} x +\sqrt {2}\, x^{2}+\sqrt {x^{8}+1}}\right )+2 \arctan \left (\frac {2^{\frac {1}{4}} \left (x^{8}+1\right )^{\frac {1}{4}}+x}{x}\right )+2 \arctan \left (\frac {2^{\frac {1}{4}} \left (x^{8}+1\right )^{\frac {1}{4}}-x}{x}\right )\right )}{16}\) \(165\)

input
int((x^8+1)^(3/4)/(x^8-1),x,method=_RETURNVERBOSE)
 
output
1/16*2^(1/4)*(2*arctan(1/2*(x^8+1)^(1/4)/x*2^(3/4))*2^(1/2)-ln((2^(1/4)*x+ 
(x^8+1)^(1/4))/(-2^(1/4)*x+(x^8+1)^(1/4)))*2^(1/2)+ln((-(x^8+1)^(1/4)*2^(3 
/4)*x+2^(1/2)*x^2+(x^8+1)^(1/2))/((x^8+1)^(1/4)*2^(3/4)*x+2^(1/2)*x^2+(x^8 
+1)^(1/2)))+2*arctan((2^(1/4)*(x^8+1)^(1/4)+x)/x)+2*arctan((2^(1/4)*(x^8+1 
)^(1/4)-x)/x))
 
3.21.99.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 10.12 (sec) , antiderivative size = 603, normalized size of antiderivative = 3.97 \[ \int \frac {\left (1+x^8\right )^{3/4}}{-1+x^8} \, dx=-\frac {1}{32} \cdot 2^{\frac {3}{4}} \log \left (-\frac {4 \cdot 2^{\frac {1}{4}} {\left (x^{8} + 1\right )}^{\frac {1}{4}} x^{3} + 2 \cdot 2^{\frac {3}{4}} {\left (x^{8} + 1\right )}^{\frac {3}{4}} x + 4 \, \sqrt {x^{8} + 1} x^{2} + \sqrt {2} {\left (x^{8} + 2 \, x^{4} + 1\right )}}{x^{8} - 2 \, x^{4} + 1}\right ) + \frac {1}{32} \cdot 2^{\frac {3}{4}} \log \left (\frac {4 \cdot 2^{\frac {1}{4}} {\left (x^{8} + 1\right )}^{\frac {1}{4}} x^{3} + 2 \cdot 2^{\frac {3}{4}} {\left (x^{8} + 1\right )}^{\frac {3}{4}} x - 4 \, \sqrt {x^{8} + 1} x^{2} - \sqrt {2} {\left (x^{8} + 2 \, x^{4} + 1\right )}}{x^{8} - 2 \, x^{4} + 1}\right ) - \frac {1}{32} i \cdot 2^{\frac {3}{4}} \log \left (\frac {4 i \cdot 2^{\frac {1}{4}} {\left (x^{8} + 1\right )}^{\frac {1}{4}} x^{3} - 2 i \cdot 2^{\frac {3}{4}} {\left (x^{8} + 1\right )}^{\frac {3}{4}} x - 4 \, \sqrt {x^{8} + 1} x^{2} + \sqrt {2} {\left (x^{8} + 2 \, x^{4} + 1\right )}}{x^{8} - 2 \, x^{4} + 1}\right ) + \frac {1}{32} i \cdot 2^{\frac {3}{4}} \log \left (\frac {-4 i \cdot 2^{\frac {1}{4}} {\left (x^{8} + 1\right )}^{\frac {1}{4}} x^{3} + 2 i \cdot 2^{\frac {3}{4}} {\left (x^{8} + 1\right )}^{\frac {3}{4}} x - 4 \, \sqrt {x^{8} + 1} x^{2} + \sqrt {2} {\left (x^{8} + 2 \, x^{4} + 1\right )}}{x^{8} - 2 \, x^{4} + 1}\right ) + \left (\frac {1}{32} i - \frac {1}{32}\right ) \cdot 2^{\frac {1}{4}} \log \left (\frac {\left (2 i + 2\right ) \cdot 2^{\frac {3}{4}} {\left (x^{8} + 1\right )}^{\frac {1}{4}} x^{3} + 4 \, \sqrt {x^{8} + 1} x^{2} - \left (2 i - 2\right ) \cdot 2^{\frac {1}{4}} {\left (x^{8} + 1\right )}^{\frac {3}{4}} x + \sqrt {2} {\left (-i \, x^{8} + 2 i \, x^{4} - i\right )}}{x^{8} + 2 \, x^{4} + 1}\right ) - \left (\frac {1}{32} i + \frac {1}{32}\right ) \cdot 2^{\frac {1}{4}} \log \left (\frac {-\left (2 i - 2\right ) \cdot 2^{\frac {3}{4}} {\left (x^{8} + 1\right )}^{\frac {1}{4}} x^{3} + 4 \, \sqrt {x^{8} + 1} x^{2} + \left (2 i + 2\right ) \cdot 2^{\frac {1}{4}} {\left (x^{8} + 1\right )}^{\frac {3}{4}} x + \sqrt {2} {\left (i \, x^{8} - 2 i \, x^{4} + i\right )}}{x^{8} + 2 \, x^{4} + 1}\right ) + \left (\frac {1}{32} i + \frac {1}{32}\right ) \cdot 2^{\frac {1}{4}} \log \left (\frac {\left (2 i - 2\right ) \cdot 2^{\frac {3}{4}} {\left (x^{8} + 1\right )}^{\frac {1}{4}} x^{3} + 4 \, \sqrt {x^{8} + 1} x^{2} - \left (2 i + 2\right ) \cdot 2^{\frac {1}{4}} {\left (x^{8} + 1\right )}^{\frac {3}{4}} x + \sqrt {2} {\left (i \, x^{8} - 2 i \, x^{4} + i\right )}}{x^{8} + 2 \, x^{4} + 1}\right ) - \left (\frac {1}{32} i - \frac {1}{32}\right ) \cdot 2^{\frac {1}{4}} \log \left (\frac {-\left (2 i + 2\right ) \cdot 2^{\frac {3}{4}} {\left (x^{8} + 1\right )}^{\frac {1}{4}} x^{3} + 4 \, \sqrt {x^{8} + 1} x^{2} + \left (2 i - 2\right ) \cdot 2^{\frac {1}{4}} {\left (x^{8} + 1\right )}^{\frac {3}{4}} x + \sqrt {2} {\left (-i \, x^{8} + 2 i \, x^{4} - i\right )}}{x^{8} + 2 \, x^{4} + 1}\right ) \]

input
integrate((x^8+1)^(3/4)/(x^8-1),x, algorithm="fricas")
 
output
-1/32*2^(3/4)*log(-(4*2^(1/4)*(x^8 + 1)^(1/4)*x^3 + 2*2^(3/4)*(x^8 + 1)^(3 
/4)*x + 4*sqrt(x^8 + 1)*x^2 + sqrt(2)*(x^8 + 2*x^4 + 1))/(x^8 - 2*x^4 + 1) 
) + 1/32*2^(3/4)*log((4*2^(1/4)*(x^8 + 1)^(1/4)*x^3 + 2*2^(3/4)*(x^8 + 1)^ 
(3/4)*x - 4*sqrt(x^8 + 1)*x^2 - sqrt(2)*(x^8 + 2*x^4 + 1))/(x^8 - 2*x^4 + 
1)) - 1/32*I*2^(3/4)*log((4*I*2^(1/4)*(x^8 + 1)^(1/4)*x^3 - 2*I*2^(3/4)*(x 
^8 + 1)^(3/4)*x - 4*sqrt(x^8 + 1)*x^2 + sqrt(2)*(x^8 + 2*x^4 + 1))/(x^8 - 
2*x^4 + 1)) + 1/32*I*2^(3/4)*log((-4*I*2^(1/4)*(x^8 + 1)^(1/4)*x^3 + 2*I*2 
^(3/4)*(x^8 + 1)^(3/4)*x - 4*sqrt(x^8 + 1)*x^2 + sqrt(2)*(x^8 + 2*x^4 + 1) 
)/(x^8 - 2*x^4 + 1)) + (1/32*I - 1/32)*2^(1/4)*log(((2*I + 2)*2^(3/4)*(x^8 
 + 1)^(1/4)*x^3 + 4*sqrt(x^8 + 1)*x^2 - (2*I - 2)*2^(1/4)*(x^8 + 1)^(3/4)* 
x + sqrt(2)*(-I*x^8 + 2*I*x^4 - I))/(x^8 + 2*x^4 + 1)) - (1/32*I + 1/32)*2 
^(1/4)*log((-(2*I - 2)*2^(3/4)*(x^8 + 1)^(1/4)*x^3 + 4*sqrt(x^8 + 1)*x^2 + 
 (2*I + 2)*2^(1/4)*(x^8 + 1)^(3/4)*x + sqrt(2)*(I*x^8 - 2*I*x^4 + I))/(x^8 
 + 2*x^4 + 1)) + (1/32*I + 1/32)*2^(1/4)*log(((2*I - 2)*2^(3/4)*(x^8 + 1)^ 
(1/4)*x^3 + 4*sqrt(x^8 + 1)*x^2 - (2*I + 2)*2^(1/4)*(x^8 + 1)^(3/4)*x + sq 
rt(2)*(I*x^8 - 2*I*x^4 + I))/(x^8 + 2*x^4 + 1)) - (1/32*I - 1/32)*2^(1/4)* 
log((-(2*I + 2)*2^(3/4)*(x^8 + 1)^(1/4)*x^3 + 4*sqrt(x^8 + 1)*x^2 + (2*I - 
 2)*2^(1/4)*(x^8 + 1)^(3/4)*x + sqrt(2)*(-I*x^8 + 2*I*x^4 - I))/(x^8 + 2*x 
^4 + 1))
 
3.21.99.6 Sympy [F]

\[ \int \frac {\left (1+x^8\right )^{3/4}}{-1+x^8} \, dx=\int \frac {\left (x^{8} + 1\right )^{\frac {3}{4}}}{\left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right ) \left (x^{4} + 1\right )}\, dx \]

input
integrate((x**8+1)**(3/4)/(x**8-1),x)
 
output
Integral((x**8 + 1)**(3/4)/((x - 1)*(x + 1)*(x**2 + 1)*(x**4 + 1)), x)
 
3.21.99.7 Maxima [F]

\[ \int \frac {\left (1+x^8\right )^{3/4}}{-1+x^8} \, dx=\int { \frac {{\left (x^{8} + 1\right )}^{\frac {3}{4}}}{x^{8} - 1} \,d x } \]

input
integrate((x^8+1)^(3/4)/(x^8-1),x, algorithm="maxima")
 
output
integrate((x^8 + 1)^(3/4)/(x^8 - 1), x)
 
3.21.99.8 Giac [F]

\[ \int \frac {\left (1+x^8\right )^{3/4}}{-1+x^8} \, dx=\int { \frac {{\left (x^{8} + 1\right )}^{\frac {3}{4}}}{x^{8} - 1} \,d x } \]

input
integrate((x^8+1)^(3/4)/(x^8-1),x, algorithm="giac")
 
output
integrate((x^8 + 1)^(3/4)/(x^8 - 1), x)
 
3.21.99.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (1+x^8\right )^{3/4}}{-1+x^8} \, dx=\int \frac {{\left (x^8+1\right )}^{3/4}}{x^8-1} \,d x \]

input
int((x^8 + 1)^(3/4)/(x^8 - 1),x)
 
output
int((x^8 + 1)^(3/4)/(x^8 - 1), x)