3.22.71 \(\int \frac {\sqrt {1+\sqrt {1-\sqrt {1+\frac {1}{x^2}}}}}{x} \, dx\) [2171]

3.22.71.1 Optimal result
3.22.71.2 Mathematica [A] (verified)
3.22.71.3 Rubi [A] (verified)
3.22.71.4 Maple [F]
3.22.71.5 Fricas [B] (verification not implemented)
3.22.71.6 Sympy [F]
3.22.71.7 Maxima [F]
3.22.71.8 Giac [F(-2)]
3.22.71.9 Mupad [F(-1)]

3.22.71.1 Optimal result

Integrand size = 27, antiderivative size = 160 \[ \int \frac {\sqrt {1+\sqrt {1-\sqrt {1+\frac {1}{x^2}}}}}{x} \, dx=-4 \sqrt {1+\sqrt {1-\sqrt {1+\frac {1}{x^2}}}}+\sqrt {-1+\sqrt {2}} \arctan \left (\frac {\sqrt {1+\sqrt {1-\sqrt {\frac {1+x^2}{x^2}}}}}{\sqrt {-1+\sqrt {2}}}\right )+2 \text {arctanh}\left (\sqrt {1+\sqrt {1-\sqrt {\frac {1+x^2}{x^2}}}}\right )+\sqrt {1+\sqrt {2}} \text {arctanh}\left (\frac {\sqrt {1+\sqrt {1-\sqrt {\frac {1+x^2}{x^2}}}}}{\sqrt {1+\sqrt {2}}}\right ) \]

output
-4*(1+(1-(1+1/x^2)^(1/2))^(1/2))^(1/2)+(2^(1/2)-1)^(1/2)*arctan((1+(1-((x^ 
2+1)/x^2)^(1/2))^(1/2))^(1/2)/(2^(1/2)-1)^(1/2))+2*arctanh((1+(1-((x^2+1)/ 
x^2)^(1/2))^(1/2))^(1/2))+(1+2^(1/2))^(1/2)*arctanh((1+(1-((x^2+1)/x^2)^(1 
/2))^(1/2))^(1/2)/(1+2^(1/2))^(1/2))
 
3.22.71.2 Mathematica [A] (verified)

Time = 0.81 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.92 \[ \int \frac {\sqrt {1+\sqrt {1-\sqrt {1+\frac {1}{x^2}}}}}{x} \, dx=-4 \sqrt {1+\sqrt {1-\sqrt {1+\frac {1}{x^2}}}}+\sqrt {-1+\sqrt {2}} \arctan \left (\sqrt {1+\sqrt {2}} \sqrt {1+\sqrt {1-\sqrt {1+\frac {1}{x^2}}}}\right )+2 \text {arctanh}\left (\sqrt {1+\sqrt {1-\sqrt {1+\frac {1}{x^2}}}}\right )+\sqrt {1+\sqrt {2}} \text {arctanh}\left (\sqrt {-1+\sqrt {2}} \sqrt {1+\sqrt {1-\sqrt {1+\frac {1}{x^2}}}}\right ) \]

input
Integrate[Sqrt[1 + Sqrt[1 - Sqrt[1 + x^(-2)]]]/x,x]
 
output
-4*Sqrt[1 + Sqrt[1 - Sqrt[1 + x^(-2)]]] + Sqrt[-1 + Sqrt[2]]*ArcTan[Sqrt[1 
 + Sqrt[2]]*Sqrt[1 + Sqrt[1 - Sqrt[1 + x^(-2)]]]] + 2*ArcTanh[Sqrt[1 + Sqr 
t[1 - Sqrt[1 + x^(-2)]]]] + Sqrt[1 + Sqrt[2]]*ArcTanh[Sqrt[-1 + Sqrt[2]]*S 
qrt[1 + Sqrt[1 - Sqrt[1 + x^(-2)]]]]
 
3.22.71.3 Rubi [A] (verified)

Time = 1.21 (sec) , antiderivative size = 288, normalized size of antiderivative = 1.80, number of steps used = 18, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.630, Rules used = {7282, 7267, 25, 7267, 2003, 2351, 25, 481, 25, 561, 25, 654, 1480, 217, 219, 1610, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}}{x} \, dx\)

\(\Big \downarrow \) 7282

\(\displaystyle -\frac {1}{2} \int \sqrt {\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1} x^2d\frac {1}{x^2}\)

\(\Big \downarrow \) 7267

\(\displaystyle -\int -\frac {\sqrt {\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1} \sqrt {1+\frac {1}{x^2}}}{1-\frac {1}{x^4}}d\sqrt {1+\frac {1}{x^2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \int \frac {\sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1} \sqrt {\frac {1}{x^2}+1}}{1-\frac {1}{x^4}}d\sqrt {\frac {1}{x^2}+1}\)

\(\Big \downarrow \) 7267

\(\displaystyle -2 \int \frac {\sqrt {\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1} \left (1-\frac {1}{x^4}\right ) x^2}{2-\frac {1}{x^4}}d\sqrt {1-\sqrt {1+\frac {1}{x^2}}}\)

\(\Big \downarrow \) 2003

\(\displaystyle -2 \int \frac {\left (1-\sqrt {1-\sqrt {1+\frac {1}{x^2}}}\right ) \left (\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1\right )^{3/2} x^2}{2-\frac {1}{x^4}}d\sqrt {1-\sqrt {1+\frac {1}{x^2}}}\)

\(\Big \downarrow \) 2351

\(\displaystyle -2 \left (\int -\frac {\left (\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1\right )^{3/2}}{2-\frac {1}{x^4}}d\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+\int \frac {\left (\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1\right )^{3/2} x^2}{2-\frac {1}{x^4}}d\sqrt {1-\sqrt {1+\frac {1}{x^2}}}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle -2 \left (\int \frac {\left (\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1\right )^{3/2} x^2}{2-\frac {1}{x^4}}d\sqrt {1-\sqrt {1+\frac {1}{x^2}}}-\int \frac {\left (\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1\right )^{3/2}}{2-\frac {1}{x^4}}d\sqrt {1-\sqrt {1+\frac {1}{x^2}}}\right )\)

\(\Big \downarrow \) 481

\(\displaystyle -2 \left (\int -\frac {2 \sqrt {1-\sqrt {1+\frac {1}{x^2}}}+3}{\sqrt {\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1} \left (2-\frac {1}{x^4}\right )}d\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+\int \frac {\left (\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1\right )^{3/2} x^2}{2-\frac {1}{x^4}}d\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+2 \sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle -2 \left (-\int \frac {2 \sqrt {1-\sqrt {1+\frac {1}{x^2}}}+3}{\sqrt {\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1} \left (2-\frac {1}{x^4}\right )}d\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+\int \frac {\left (\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1\right )^{3/2} x^2}{2-\frac {1}{x^4}}d\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+2 \sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}\right )\)

\(\Big \downarrow \) 561

\(\displaystyle -2 \left (-\int \frac {2 \sqrt {1-\sqrt {1+\frac {1}{x^2}}}+3}{\sqrt {\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1} \left (2-\frac {1}{x^4}\right )}d\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+2 \int -\frac {1}{\left (1-\frac {1}{x^4}\right ) \left (1+\frac {2}{x^4}-\frac {1}{x^8}\right ) x^8}d\sqrt {\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1}+2 \sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle -2 \left (-\int \frac {2 \sqrt {1-\sqrt {1+\frac {1}{x^2}}}+3}{\sqrt {\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1} \left (2-\frac {1}{x^4}\right )}d\sqrt {1-\sqrt {1+\frac {1}{x^2}}}-2 \int \frac {1}{\left (1-\frac {1}{x^4}\right ) \left (1+\frac {2}{x^4}-\frac {1}{x^8}\right ) x^8}d\sqrt {\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1}+2 \sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}\right )\)

\(\Big \downarrow \) 654

\(\displaystyle -2 \left (-2 \int \frac {1+\frac {2}{x^4}}{1+\frac {2}{x^4}-\frac {1}{x^8}}d\sqrt {\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1}-2 \int \frac {1}{\left (1-\frac {1}{x^4}\right ) \left (1+\frac {2}{x^4}-\frac {1}{x^8}\right ) x^8}d\sqrt {\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1}+2 \sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}\right )\)

\(\Big \downarrow \) 1480

\(\displaystyle -2 \left (-2 \left (\frac {1}{4} \left (4-3 \sqrt {2}\right ) \int \frac {1}{-\sqrt {2}+1-\frac {1}{x^4}}d\sqrt {\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1}+\frac {1}{4} \left (4+3 \sqrt {2}\right ) \int \frac {1}{\sqrt {2}+1-\frac {1}{x^4}}d\sqrt {\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1}\right )-2 \int \frac {1}{\left (1-\frac {1}{x^4}\right ) \left (1+\frac {2}{x^4}-\frac {1}{x^8}\right ) x^8}d\sqrt {\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1}+2 \sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle -2 \left (-2 \left (\frac {1}{4} \left (4+3 \sqrt {2}\right ) \int \frac {1}{\sqrt {2}+1-\frac {1}{x^4}}d\sqrt {\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1}-\frac {\left (4-3 \sqrt {2}\right ) \arctan \left (\frac {\sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}}{\sqrt {\sqrt {2}-1}}\right )}{4 \sqrt {\sqrt {2}-1}}\right )-2 \int \frac {1}{\left (1-\frac {1}{x^4}\right ) \left (1+\frac {2}{x^4}-\frac {1}{x^8}\right ) x^8}d\sqrt {\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1}+2 \sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle -2 \left (-2 \int \frac {1}{\left (1-\frac {1}{x^4}\right ) \left (1+\frac {2}{x^4}-\frac {1}{x^8}\right ) x^8}d\sqrt {\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1}-2 \left (\frac {\left (4+3 \sqrt {2}\right ) \text {arctanh}\left (\frac {\sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}}{\sqrt {1+\sqrt {2}}}\right )}{4 \sqrt {1+\sqrt {2}}}-\frac {\left (4-3 \sqrt {2}\right ) \arctan \left (\frac {\sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}}{\sqrt {\sqrt {2}-1}}\right )}{4 \sqrt {\sqrt {2}-1}}\right )+2 \sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}\right )\)

\(\Big \downarrow \) 1610

\(\displaystyle -2 \left (-2 \int \left (\frac {1+\frac {3}{x^4}}{2 \left (-1-\frac {2}{x^4}+\frac {1}{x^8}\right )}-\frac {1}{2 \left (\frac {1}{x^4}-1\right )}\right )d\sqrt {\sqrt {1-\sqrt {1+\frac {1}{x^2}}}+1}-2 \left (\frac {\left (4+3 \sqrt {2}\right ) \text {arctanh}\left (\frac {\sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}}{\sqrt {1+\sqrt {2}}}\right )}{4 \sqrt {1+\sqrt {2}}}-\frac {\left (4-3 \sqrt {2}\right ) \arctan \left (\frac {\sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}}{\sqrt {\sqrt {2}-1}}\right )}{4 \sqrt {\sqrt {2}-1}}\right )+2 \sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle -2 \left (-2 \left (\frac {\left (4+3 \sqrt {2}\right ) \text {arctanh}\left (\frac {\sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}}{\sqrt {1+\sqrt {2}}}\right )}{4 \sqrt {1+\sqrt {2}}}-\frac {\left (4-3 \sqrt {2}\right ) \arctan \left (\frac {\sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}}{\sqrt {\sqrt {2}-1}}\right )}{4 \sqrt {\sqrt {2}-1}}\right )+2 \left (-\frac {1}{4} \sqrt {5 \sqrt {2}-7} \arctan \left (\frac {\sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}}{\sqrt {\sqrt {2}-1}}\right )-\frac {1}{2} \text {arctanh}\left (\sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}\right )+\frac {1}{4} \sqrt {7+5 \sqrt {2}} \text {arctanh}\left (\frac {\sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}}{\sqrt {1+\sqrt {2}}}\right )\right )+2 \sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}\right )\)

input
Int[Sqrt[1 + Sqrt[1 - Sqrt[1 + x^(-2)]]]/x,x]
 
output
-2*(2*Sqrt[1 + Sqrt[1 - Sqrt[1 + x^(-2)]]] - 2*(-1/4*((4 - 3*Sqrt[2])*ArcT 
an[Sqrt[1 + Sqrt[1 - Sqrt[1 + x^(-2)]]]/Sqrt[-1 + Sqrt[2]]])/Sqrt[-1 + Sqr 
t[2]] + ((4 + 3*Sqrt[2])*ArcTanh[Sqrt[1 + Sqrt[1 - Sqrt[1 + x^(-2)]]]/Sqrt 
[1 + Sqrt[2]]])/(4*Sqrt[1 + Sqrt[2]])) + 2*(-1/4*(Sqrt[-7 + 5*Sqrt[2]]*Arc 
Tan[Sqrt[1 + Sqrt[1 - Sqrt[1 + x^(-2)]]]/Sqrt[-1 + Sqrt[2]]]) - ArcTanh[Sq 
rt[1 + Sqrt[1 - Sqrt[1 + x^(-2)]]]]/2 + (Sqrt[7 + 5*Sqrt[2]]*ArcTanh[Sqrt[ 
1 + Sqrt[1 - Sqrt[1 + x^(-2)]]]/Sqrt[1 + Sqrt[2]]])/4))
 

3.22.71.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 481
Int[((c_) + (d_.)*(x_))^(n_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[d*((c 
 + d*x)^(n - 1)/(b*(n - 1))), x] + Simp[1/b   Int[(c + d*x)^(n - 2)*(Simp[b 
*c^2 - a*d^2 + 2*b*c*d*x, x]/(a + b*x^2)), x], x] /; FreeQ[{a, b, c, d}, x] 
 && GtQ[n, 1]
 

rule 561
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbo 
l] :> With[{k = Denominator[n]}, Simp[k/d   Subst[Int[x^(k*(n + 1) - 1)*(-c 
/d + x^k/d)^m*Simp[(b*c^2 + a*d^2)/d^2 - 2*b*c*(x^k/d^2) + b*(x^(2*k)/d^2), 
 x]^p, x], x, (c + d*x)^(1/k)], x]] /; FreeQ[{a, b, c, d, m, p}, x] && Frac 
tionQ[n] && IntegerQ[p] && IntegerQ[m]
 

rule 654
Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_) + (c_.)*(x_)^2)), 
x_Symbol] :> Simp[2   Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 + a*e^2 - 2*c*d* 
x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1610
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.))/((a_) + (b_.)*(x_)^2 + 
 (c_.)*(x_)^4), x_Symbol] :> Int[ExpandIntegrand[(f*x)^m*((d + e*x^2)^q/(a 
+ b*x^2 + c*x^4)), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^2 - 4 
*a*c, 0] && IntegerQ[q] && IntegerQ[m]
 

rule 2003
Int[(u_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] : 
> Int[u*(c + d*x)^(n + p)*(a/c + (b/d)*x)^p, x] /; FreeQ[{a, b, c, d, n, p} 
, x] && EqQ[b*c^2 + a*d^2, 0] && (IntegerQ[p] || (GtQ[a, 0] && GtQ[c, 0] && 
  !IntegerQ[n]))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2351
Int[((Px_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_.))/(x_), x_S 
ymbol] :> Int[PolynomialQuotient[Px, x, x]*(c + d*x)^n*(a + b*x^2)^p, x] + 
Simp[PolynomialRemainder[Px, x, x]   Int[(c + d*x)^n*((a + b*x^2)^p/x), x], 
 x] /; FreeQ[{a, b, c, d, n, p}, x] && PolynomialQ[Px, x]
 

rule 7267
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfLinear[u, x]}, Si 
mp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/lst[[2]])], x 
] /;  !FalseQ[lst] && SubstForFractionalPowerQ[u, lst[[3]], x]]
 

rule 7282
Int[(u_)/(x_), x_Symbol] :> With[{lst = PowerVariableExpn[u, 0, x]}, Simp[1 
/lst[[2]]   Subst[Int[NormalizeIntegrand[Simplify[lst[[1]]/x], x], x], x, ( 
lst[[3]]*x)^lst[[2]]], x] /;  !FalseQ[lst] && NeQ[lst[[2]], 0]] /; NonsumQ[ 
u] &&  !RationalFunctionQ[u, x]
 
3.22.71.4 Maple [F]

\[\int \frac {\sqrt {1+\sqrt {1-\sqrt {1+\frac {1}{x^{2}}}}}}{x}d x\]

input
int((1+(1-(1+1/x^2)^(1/2))^(1/2))^(1/2)/x,x)
 
output
int((1+(1-(1+1/x^2)^(1/2))^(1/2))^(1/2)/x,x)
 
3.22.71.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1197 vs. \(2 (120) = 240\).

Time = 100.64 (sec) , antiderivative size = 1197, normalized size of antiderivative = 7.48 \[ \int \frac {\sqrt {1+\sqrt {1-\sqrt {1+\frac {1}{x^2}}}}}{x} \, dx=\text {Too large to display} \]

input
integrate((1+(1-(1+1/x^2)^(1/2))^(1/2))^(1/2)/x,x, algorithm="fricas")
 
output
-1/4*sqrt(sqrt(2) + 1)*log(4*(101*sqrt(2)*x^2 + 150*x^2 - (101*sqrt(2)*x^2 
 + 150*x^2)*sqrt((x^2 + 1)/x^2))*sqrt(sqrt(2) + 1)*sqrt(-sqrt((x^2 + 1)/x^ 
2) + 1) + 2*(404*x^2 + sqrt(2)*(300*x^2 + 49) - 4*(75*sqrt(2)*x^2 + 101*x^ 
2)*sqrt((x^2 + 1)/x^2) + 52)*sqrt(sqrt(2) + 1) - 4*(150*sqrt(2)*x^2 + 202* 
x^2 + (101*sqrt(2)*x^2 + 150*x^2 - (101*sqrt(2)*x^2 + 150*x^2)*sqrt((x^2 + 
 1)/x^2))*sqrt(-sqrt((x^2 + 1)/x^2) + 1) - 2*(75*sqrt(2)*x^2 + 101*x^2)*sq 
rt((x^2 + 1)/x^2))*sqrt(sqrt(-sqrt((x^2 + 1)/x^2) + 1) + 1)) + 1/4*sqrt(sq 
rt(2) + 1)*log(-4*(101*sqrt(2)*x^2 + 150*x^2 - (101*sqrt(2)*x^2 + 150*x^2) 
*sqrt((x^2 + 1)/x^2))*sqrt(sqrt(2) + 1)*sqrt(-sqrt((x^2 + 1)/x^2) + 1) - 2 
*(404*x^2 + sqrt(2)*(300*x^2 + 49) - 4*(75*sqrt(2)*x^2 + 101*x^2)*sqrt((x^ 
2 + 1)/x^2) + 52)*sqrt(sqrt(2) + 1) - 4*(150*sqrt(2)*x^2 + 202*x^2 + (101* 
sqrt(2)*x^2 + 150*x^2 - (101*sqrt(2)*x^2 + 150*x^2)*sqrt((x^2 + 1)/x^2))*s 
qrt(-sqrt((x^2 + 1)/x^2) + 1) - 2*(75*sqrt(2)*x^2 + 101*x^2)*sqrt((x^2 + 1 
)/x^2))*sqrt(sqrt(-sqrt((x^2 + 1)/x^2) + 1) + 1)) - 1/8*sqrt(-4*sqrt(2) + 
4)*log(4*(75*sqrt(2)*x^2 - 101*x^2)*sqrt(-4*sqrt(2) + 4)*sqrt((x^2 + 1)/x^ 
2) + (404*x^2 - sqrt(2)*(300*x^2 + 49) + 52)*sqrt(-4*sqrt(2) + 4) + 4*(150 
*sqrt(2)*x^2 - 202*x^2 + (101*sqrt(2)*x^2 - 150*x^2 - (101*sqrt(2)*x^2 - 1 
50*x^2)*sqrt((x^2 + 1)/x^2))*sqrt(-sqrt((x^2 + 1)/x^2) + 1) - 2*(75*sqrt(2 
)*x^2 - 101*x^2)*sqrt((x^2 + 1)/x^2))*sqrt(sqrt(-sqrt((x^2 + 1)/x^2) + 1) 
+ 1) + 2*((101*sqrt(2)*x^2 - 150*x^2)*sqrt(-4*sqrt(2) + 4)*sqrt((x^2 + ...
 
3.22.71.6 Sympy [F]

\[ \int \frac {\sqrt {1+\sqrt {1-\sqrt {1+\frac {1}{x^2}}}}}{x} \, dx=\int \frac {\sqrt {\sqrt {1 - \sqrt {1 + \frac {1}{x^{2}}}} + 1}}{x}\, dx \]

input
integrate((1+(1-(1+1/x**2)**(1/2))**(1/2))**(1/2)/x,x)
 
output
Integral(sqrt(sqrt(1 - sqrt(1 + x**(-2))) + 1)/x, x)
 
3.22.71.7 Maxima [F]

\[ \int \frac {\sqrt {1+\sqrt {1-\sqrt {1+\frac {1}{x^2}}}}}{x} \, dx=\int { \frac {\sqrt {\sqrt {-\sqrt {\frac {1}{x^{2}} + 1} + 1} + 1}}{x} \,d x } \]

input
integrate((1+(1-(1+1/x^2)^(1/2))^(1/2))^(1/2)/x,x, algorithm="maxima")
 
output
integrate(sqrt(sqrt(-sqrt(1/x^2 + 1) + 1) + 1)/x, x)
 
3.22.71.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {1+\sqrt {1-\sqrt {1+\frac {1}{x^2}}}}}{x} \, dx=\text {Exception raised: TypeError} \]

input
integrate((1+(1-(1+1/x^2)^(1/2))^(1/2))^(1/2)/x,x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error index.cc index_gcd Error: Bad 
 Argument ValueError index.cc index_gcd Error: Bad Argument ValueError ind 
ex.cc ind
 
3.22.71.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {1+\sqrt {1-\sqrt {1+\frac {1}{x^2}}}}}{x} \, dx=\int \frac {\sqrt {\sqrt {1-\sqrt {\frac {1}{x^2}+1}}+1}}{x} \,d x \]

input
int(((1 - (1/x^2 + 1)^(1/2))^(1/2) + 1)^(1/2)/x,x)
 
output
int(((1 - (1/x^2 + 1)^(1/2))^(1/2) + 1)^(1/2)/x, x)