3.23.4 \(\int \frac {x^2 (-4+7 x^3)}{\sqrt [3]{-x+x^4} (-1-x^4+x^7)} \, dx\) [2204]

3.23.4.1 Optimal result
3.23.4.2 Mathematica [F]
3.23.4.3 Rubi [F]
3.23.4.4 Maple [C] (verified)
3.23.4.5 Fricas [A] (verification not implemented)
3.23.4.6 Sympy [F]
3.23.4.7 Maxima [F]
3.23.4.8 Giac [F]
3.23.4.9 Mupad [F(-1)]

3.23.4.1 Optimal result

Integrand size = 34, antiderivative size = 163 \[ \int \frac {x^2 \left (-4+7 x^3\right )}{\sqrt [3]{-x+x^4} \left (-1-x^4+x^7\right )} \, dx=-\sqrt {3} \arctan \left (\frac {3 \sqrt {3} x \sqrt [3]{-x+x^4}-3 x^2 \sqrt [3]{-x+x^4}}{-6+2 \sqrt {3} x-3 x \sqrt [3]{-x+x^4}+\sqrt {3} x^2 \sqrt [3]{-x+x^4}}\right )+2 \text {arctanh}\left (1-2 x \sqrt [3]{-x+x^4}\right )-\text {arctanh}\left (\frac {1+x \sqrt [3]{-x+x^4}}{1+x \sqrt [3]{-x+x^4}+2 x^2 \left (-x+x^4\right )^{2/3}}\right ) \]

output
-3^(1/2)*arctan((3*3^(1/2)*x*(x^4-x)^(1/3)-3*x^2*(x^4-x)^(1/3))/(-6+2*x*3^ 
(1/2)-3*x*(x^4-x)^(1/3)+3^(1/2)*x^2*(x^4-x)^(1/3)))-2*arctanh(-1+2*x*(x^4- 
x)^(1/3))-arctanh((1+x*(x^4-x)^(1/3))/(1+x*(x^4-x)^(1/3)+2*x^2*(x^4-x)^(2/ 
3)))
 
3.23.4.2 Mathematica [F]

\[ \int \frac {x^2 \left (-4+7 x^3\right )}{\sqrt [3]{-x+x^4} \left (-1-x^4+x^7\right )} \, dx=\int \frac {x^2 \left (-4+7 x^3\right )}{\sqrt [3]{-x+x^4} \left (-1-x^4+x^7\right )} \, dx \]

input
Integrate[(x^2*(-4 + 7*x^3))/((-x + x^4)^(1/3)*(-1 - x^4 + x^7)),x]
 
output
Integrate[(x^2*(-4 + 7*x^3))/((-x + x^4)^(1/3)*(-1 - x^4 + x^7)), x]
 
3.23.4.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \left (7 x^3-4\right )}{\sqrt [3]{x^4-x} \left (x^7-x^4-1\right )} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt [3]{x} \sqrt [3]{x^3-1} \int \frac {x^{5/3} \left (4-7 x^3\right )}{\sqrt [3]{x^3-1} \left (-x^7+x^4+1\right )}dx}{\sqrt [3]{x^4-x}}\)

\(\Big \downarrow \) 2035

\(\displaystyle \frac {3 \sqrt [3]{x} \sqrt [3]{x^3-1} \int \frac {x^{7/3} \left (4-7 x^3\right )}{\sqrt [3]{x^3-1} \left (-x^7+x^4+1\right )}d\sqrt [3]{x}}{\sqrt [3]{x^4-x}}\)

\(\Big \downarrow \) 7293

\(\displaystyle \frac {3 \sqrt [3]{x} \sqrt [3]{x^3-1} \int \left (\frac {7 x^{16/3}}{\sqrt [3]{x^3-1} \left (x^7-x^4-1\right )}-\frac {4 x^{7/3}}{\sqrt [3]{x^3-1} \left (x^7-x^4-1\right )}\right )d\sqrt [3]{x}}{\sqrt [3]{x^4-x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {3 \sqrt [3]{x} \sqrt [3]{x^3-1} \left (7 \int \frac {x^{16/3}}{\sqrt [3]{x^3-1} \left (x^7-x^4-1\right )}d\sqrt [3]{x}-4 \int \frac {x^{7/3}}{\sqrt [3]{x^3-1} \left (x^7-x^4-1\right )}d\sqrt [3]{x}\right )}{\sqrt [3]{x^4-x}}\)

input
Int[(x^2*(-4 + 7*x^3))/((-x + x^4)^(1/3)*(-1 - x^4 + x^7)),x]
 
output
$Aborted
 

3.23.4.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.23.4.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 13.81 (sec) , antiderivative size = 516, normalized size of antiderivative = 3.17

method result size
trager \(\text {Expression too large to display}\) \(516\)

input
int(x^2*(7*x^3-4)/(x^4-x)^(1/3)/(x^7-x^4-1),x,method=_RETURNVERBOSE)
 
output
-ln(-(2750978024320396805141*RootOf(_Z^2+_Z+1)^2*x^7+403142488045119745173 
926*RootOf(_Z^2+_Z+1)*x^7+10427862756551384399808209*x^7-27509780243203968 
05141*RootOf(_Z^2+_Z+1)^2*x^4-9624328758485465306265498*RootOf(_Z^2+_Z+1)* 
(x^4-x)^(2/3)*x^2-403142488045119745173926*RootOf(_Z^2+_Z+1)*x^4+108255032 
88547863351371853*x^2*(x^4-x)^(2/3)-10427862756551384399808209*x^4-9624328 
758485465306265498*RootOf(_Z^2+_Z+1)*(x^4-x)^(1/3)*x-308109538723884442175 
792*RootOf(_Z^2+_Z+1)^2+10825503288547863351371853*x*(x^4-x)^(1/3)-1033282 
9807230149096810075*RootOf(_Z^2+_Z+1)+92281971296914906192993)/(x^7-x^4-1) 
)*RootOf(_Z^2+_Z+1)+RootOf(_Z^2+_Z+1)*ln(-(2750978024320396805141*RootOf(_ 
Z^2+_Z+1)^2*x^7-397640531996478951563644*RootOf(_Z^2+_Z+1)*x^7+10027471246 
530585051439424*x^7-2750978024320396805141*RootOf(_Z^2+_Z+1)^2*x^4+9624328 
758485465306265498*RootOf(_Z^2+_Z+1)*(x^4-x)^(2/3)*x^2+3976405319964789515 
63644*RootOf(_Z^2+_Z+1)*x^4+20449832047033328657637351*x^2*(x^4-x)^(2/3)-1 
0027471246530585051439424*x^4+9624328758485465306265498*RootOf(_Z^2+_Z+1)* 
(x^4-x)^(1/3)*x-308109538723884442175792*RootOf(_Z^2+_Z+1)^2+2044983204703 
3328657637351*x*(x^4-x)^(1/3)+9716610729782380212458491*RootOf(_Z^2+_Z+1)+ 
10117002239803179560827276)/(x^7-x^4-1))-ln(-(2750978024320396805141*RootO 
f(_Z^2+_Z+1)^2*x^7+403142488045119745173926*RootOf(_Z^2+_Z+1)*x^7+10427862 
756551384399808209*x^7-2750978024320396805141*RootOf(_Z^2+_Z+1)^2*x^4-9624 
328758485465306265498*RootOf(_Z^2+_Z+1)*(x^4-x)^(2/3)*x^2-4031424880451...
 
3.23.4.5 Fricas [A] (verification not implemented)

Time = 1.97 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.73 \[ \int \frac {x^2 \left (-4+7 x^3\right )}{\sqrt [3]{-x+x^4} \left (-1-x^4+x^7\right )} \, dx=-\sqrt {3} \arctan \left (\frac {2 \, \sqrt {3} {\left (x^{4} - x\right )}^{\frac {2}{3}} x^{2} - 4 \, \sqrt {3} {\left (x^{4} - x\right )}^{\frac {1}{3}} x - \sqrt {3} {\left (x^{7} - x^{4}\right )}}{x^{7} - x^{4} + 8}\right ) + \frac {1}{2} \, \log \left (\frac {x^{7} - x^{4} - 3 \, {\left (x^{4} - x\right )}^{\frac {2}{3}} x^{2} + 3 \, {\left (x^{4} - x\right )}^{\frac {1}{3}} x - 1}{x^{7} - x^{4} - 1}\right ) \]

input
integrate(x^2*(7*x^3-4)/(x^4-x)^(1/3)/(x^7-x^4-1),x, algorithm="fricas")
 
output
-sqrt(3)*arctan((2*sqrt(3)*(x^4 - x)^(2/3)*x^2 - 4*sqrt(3)*(x^4 - x)^(1/3) 
*x - sqrt(3)*(x^7 - x^4))/(x^7 - x^4 + 8)) + 1/2*log((x^7 - x^4 - 3*(x^4 - 
 x)^(2/3)*x^2 + 3*(x^4 - x)^(1/3)*x - 1)/(x^7 - x^4 - 1))
 
3.23.4.6 Sympy [F]

\[ \int \frac {x^2 \left (-4+7 x^3\right )}{\sqrt [3]{-x+x^4} \left (-1-x^4+x^7\right )} \, dx=\int \frac {x^{2} \cdot \left (7 x^{3} - 4\right )}{\sqrt [3]{x \left (x - 1\right ) \left (x^{2} + x + 1\right )} \left (x^{7} - x^{4} - 1\right )}\, dx \]

input
integrate(x**2*(7*x**3-4)/(x**4-x)**(1/3)/(x**7-x**4-1),x)
 
output
Integral(x**2*(7*x**3 - 4)/((x*(x - 1)*(x**2 + x + 1))**(1/3)*(x**7 - x**4 
 - 1)), x)
 
3.23.4.7 Maxima [F]

\[ \int \frac {x^2 \left (-4+7 x^3\right )}{\sqrt [3]{-x+x^4} \left (-1-x^4+x^7\right )} \, dx=\int { \frac {{\left (7 \, x^{3} - 4\right )} x^{2}}{{\left (x^{7} - x^{4} - 1\right )} {\left (x^{4} - x\right )}^{\frac {1}{3}}} \,d x } \]

input
integrate(x^2*(7*x^3-4)/(x^4-x)^(1/3)/(x^7-x^4-1),x, algorithm="maxima")
 
output
integrate((7*x^3 - 4)*x^2/((x^7 - x^4 - 1)*(x^4 - x)^(1/3)), x)
 
3.23.4.8 Giac [F]

\[ \int \frac {x^2 \left (-4+7 x^3\right )}{\sqrt [3]{-x+x^4} \left (-1-x^4+x^7\right )} \, dx=\int { \frac {{\left (7 \, x^{3} - 4\right )} x^{2}}{{\left (x^{7} - x^{4} - 1\right )} {\left (x^{4} - x\right )}^{\frac {1}{3}}} \,d x } \]

input
integrate(x^2*(7*x^3-4)/(x^4-x)^(1/3)/(x^7-x^4-1),x, algorithm="giac")
 
output
integrate((7*x^3 - 4)*x^2/((x^7 - x^4 - 1)*(x^4 - x)^(1/3)), x)
 
3.23.4.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 \left (-4+7 x^3\right )}{\sqrt [3]{-x+x^4} \left (-1-x^4+x^7\right )} \, dx=-\int \frac {x^2\,\left (7\,x^3-4\right )}{{\left (x^4-x\right )}^{1/3}\,\left (-x^7+x^4+1\right )} \,d x \]

input
int(-(x^2*(7*x^3 - 4))/((x^4 - x)^(1/3)*(x^4 - x^7 + 1)),x)
 
output
-int((x^2*(7*x^3 - 4))/((x^4 - x)^(1/3)*(x^4 - x^7 + 1)), x)