3.23.53 \(\int \frac {(1+x^2) \sqrt [4]{x^3+x^5}}{x^2 (-1+x^2)} \, dx\) [2253]

3.23.53.1 Optimal result
3.23.53.2 Mathematica [A] (verified)
3.23.53.3 Rubi [C] (verified)
3.23.53.4 Maple [A] (verified)
3.23.53.5 Fricas [C] (verification not implemented)
3.23.53.6 Sympy [F]
3.23.53.7 Maxima [F]
3.23.53.8 Giac [F]
3.23.53.9 Mupad [F(-1)]

3.23.53.1 Optimal result

Integrand size = 27, antiderivative size = 169 \[ \int \frac {\left (1+x^2\right ) \sqrt [4]{x^3+x^5}}{x^2 \left (-1+x^2\right )} \, dx=\frac {4 \sqrt [4]{x^3+x^5}}{x}+\sqrt [4]{2} \arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^3+x^5}}\right )-\frac {\arctan \left (\frac {2^{3/4} x \sqrt [4]{x^3+x^5}}{\sqrt {2} x^2-\sqrt {x^3+x^5}}\right )}{\sqrt [4]{2}}-\sqrt [4]{2} \text {arctanh}\left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^3+x^5}}\right )-\frac {\text {arctanh}\left (\frac {\frac {x^2}{\sqrt [4]{2}}+\frac {\sqrt {x^3+x^5}}{2^{3/4}}}{x \sqrt [4]{x^3+x^5}}\right )}{\sqrt [4]{2}} \]

output
4*(x^5+x^3)^(1/4)/x+2^(1/4)*arctan(2^(1/4)*x/(x^5+x^3)^(1/4))-1/2*arctan(2 
^(3/4)*x*(x^5+x^3)^(1/4)/(2^(1/2)*x^2-(x^5+x^3)^(1/2)))*2^(3/4)-2^(1/4)*ar 
ctanh(2^(1/4)*x/(x^5+x^3)^(1/4))-1/2*arctanh((1/2*x^2*2^(3/4)+1/2*(x^5+x^3 
)^(1/2)*2^(1/4))/x/(x^5+x^3)^(1/4))*2^(3/4)
 
3.23.53.2 Mathematica [A] (verified)

Time = 0.64 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.30 \[ \int \frac {\left (1+x^2\right ) \sqrt [4]{x^3+x^5}}{x^2 \left (-1+x^2\right )} \, dx=-\frac {\sqrt [4]{x^3+x^5} \left (-8 \sqrt [4]{1+x^2}-2 \sqrt [4]{2} \sqrt [4]{x} \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{1+x^2}}\right )+2^{3/4} \sqrt [4]{x} \arctan \left (\frac {2^{3/4} \sqrt [4]{x} \sqrt [4]{1+x^2}}{\sqrt {2} \sqrt {x}-\sqrt {1+x^2}}\right )+2 \sqrt [4]{2} \sqrt [4]{x} \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{1+x^2}}\right )+2^{3/4} \sqrt [4]{x} \text {arctanh}\left (\frac {2 \sqrt [4]{2} \sqrt [4]{x} \sqrt [4]{1+x^2}}{2 \sqrt {x}+\sqrt {2} \sqrt {1+x^2}}\right )\right )}{2 x \sqrt [4]{1+x^2}} \]

input
Integrate[((1 + x^2)*(x^3 + x^5)^(1/4))/(x^2*(-1 + x^2)),x]
 
output
-1/2*((x^3 + x^5)^(1/4)*(-8*(1 + x^2)^(1/4) - 2*2^(1/4)*x^(1/4)*ArcTan[(2^ 
(1/4)*x^(1/4))/(1 + x^2)^(1/4)] + 2^(3/4)*x^(1/4)*ArcTan[(2^(3/4)*x^(1/4)* 
(1 + x^2)^(1/4))/(Sqrt[2]*Sqrt[x] - Sqrt[1 + x^2])] + 2*2^(1/4)*x^(1/4)*Ar 
cTanh[(2^(1/4)*x^(1/4))/(1 + x^2)^(1/4)] + 2^(3/4)*x^(1/4)*ArcTanh[(2*2^(1 
/4)*x^(1/4)*(1 + x^2)^(1/4))/(2*Sqrt[x] + Sqrt[2]*Sqrt[1 + x^2])]))/(x*(1 
+ x^2)^(1/4))
 
3.23.53.3 Rubi [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 0.30 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.26, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {2467, 25, 368, 1012}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^2+1\right ) \sqrt [4]{x^5+x^3}}{x^2 \left (x^2-1\right )} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt [4]{x^5+x^3} \int -\frac {\left (x^2+1\right )^{5/4}}{x^{5/4} \left (1-x^2\right )}dx}{x^{3/4} \sqrt [4]{x^2+1}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt [4]{x^5+x^3} \int \frac {\left (x^2+1\right )^{5/4}}{x^{5/4} \left (1-x^2\right )}dx}{x^{3/4} \sqrt [4]{x^2+1}}\)

\(\Big \downarrow \) 368

\(\displaystyle -\frac {4 \sqrt [4]{x^5+x^3} \int \frac {\left (x^2+1\right )^{5/4}}{\sqrt {x} \left (1-x^2\right )}d\sqrt [4]{x}}{x^{3/4} \sqrt [4]{x^2+1}}\)

\(\Big \downarrow \) 1012

\(\displaystyle \frac {4 \sqrt [4]{x^5+x^3} \operatorname {AppellF1}\left (-\frac {1}{8},1,-\frac {5}{4},\frac {7}{8},x^2,-x^2\right )}{x \sqrt [4]{x^2+1}}\)

input
Int[((1 + x^2)*(x^3 + x^5)^(1/4))/(x^2*(-1 + x^2)),x]
 
output
(4*(x^3 + x^5)^(1/4)*AppellF1[-1/8, 1, -5/4, 7/8, x^2, -x^2])/(x*(1 + x^2) 
^(1/4))
 

3.23.53.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 368
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> With[{k = Denominator[m]}, Simp[k/e   Subst[Int[x^(k*(m + 1) 
 - 1)*(a + b*(x^(k*2)/e^2))^p*(c + d*(x^(k*2)/e^2))^q, x], x, (e*x)^(1/k)], 
 x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && FractionQ[m 
] && IntegerQ[p]
 

rule 1012
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^p*c^q*((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m 
+ 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, 
 b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n 
 - 1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 
3.23.53.4 Maple [A] (verified)

Time = 26.58 (sec) , antiderivative size = 234, normalized size of antiderivative = 1.38

method result size
pseudoelliptic \(\frac {-\ln \left (\frac {2^{\frac {3}{4}} \left (x^{3} \left (x^{2}+1\right )\right )^{\frac {1}{4}} x +\sqrt {2}\, x^{2}+\sqrt {x^{3} \left (x^{2}+1\right )}}{-2^{\frac {3}{4}} \left (x^{3} \left (x^{2}+1\right )\right )^{\frac {1}{4}} x +\sqrt {2}\, x^{2}+\sqrt {x^{3} \left (x^{2}+1\right )}}\right ) 2^{\frac {3}{4}} x -2 \arctan \left (\frac {2^{\frac {1}{4}} \left (x^{3} \left (x^{2}+1\right )\right )^{\frac {1}{4}}+x}{x}\right ) 2^{\frac {3}{4}} x -2 \arctan \left (\frac {2^{\frac {1}{4}} \left (x^{3} \left (x^{2}+1\right )\right )^{\frac {1}{4}}-x}{x}\right ) 2^{\frac {3}{4}} x -2 \ln \left (\frac {-2^{\frac {1}{4}} x -\left (x^{3} \left (x^{2}+1\right )\right )^{\frac {1}{4}}}{2^{\frac {1}{4}} x -\left (x^{3} \left (x^{2}+1\right )\right )^{\frac {1}{4}}}\right ) 2^{\frac {1}{4}} x -4 \arctan \left (\frac {2^{\frac {3}{4}} \left (x^{3} \left (x^{2}+1\right )\right )^{\frac {1}{4}}}{2 x}\right ) 2^{\frac {1}{4}} x +16 \left (x^{3} \left (x^{2}+1\right )\right )^{\frac {1}{4}}}{4 x}\) \(234\)
trager \(\text {Expression too large to display}\) \(731\)
risch \(\text {Expression too large to display}\) \(1754\)

input
int((x^2+1)*(x^5+x^3)^(1/4)/x^2/(x^2-1),x,method=_RETURNVERBOSE)
 
output
1/4*(-ln((2^(3/4)*(x^3*(x^2+1))^(1/4)*x+2^(1/2)*x^2+(x^3*(x^2+1))^(1/2))/( 
-2^(3/4)*(x^3*(x^2+1))^(1/4)*x+2^(1/2)*x^2+(x^3*(x^2+1))^(1/2)))*2^(3/4)*x 
-2*arctan((2^(1/4)*(x^3*(x^2+1))^(1/4)+x)/x)*2^(3/4)*x-2*arctan((2^(1/4)*( 
x^3*(x^2+1))^(1/4)-x)/x)*2^(3/4)*x-2*ln((-2^(1/4)*x-(x^3*(x^2+1))^(1/4))/( 
2^(1/4)*x-(x^3*(x^2+1))^(1/4)))*2^(1/4)*x-4*arctan(1/2*2^(3/4)/x*(x^3*(x^2 
+1))^(1/4))*2^(1/4)*x+16*(x^3*(x^2+1))^(1/4))/x
 
3.23.53.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 3.17 (sec) , antiderivative size = 689, normalized size of antiderivative = 4.08 \[ \int \frac {\left (1+x^2\right ) \sqrt [4]{x^3+x^5}}{x^2 \left (-1+x^2\right )} \, dx=-\frac {2^{\frac {1}{4}} x \log \left (\frac {4 \, \sqrt {2} {\left (x^{5} + x^{3}\right )}^{\frac {1}{4}} x^{2} + 2^{\frac {3}{4}} {\left (x^{4} + 2 \, x^{3} + x^{2}\right )} + 4 \cdot 2^{\frac {1}{4}} \sqrt {x^{5} + x^{3}} x + 4 \, {\left (x^{5} + x^{3}\right )}^{\frac {3}{4}}}{x^{4} - 2 \, x^{3} + x^{2}}\right ) - 2^{\frac {1}{4}} x \log \left (\frac {4 \, \sqrt {2} {\left (x^{5} + x^{3}\right )}^{\frac {1}{4}} x^{2} - 2^{\frac {3}{4}} {\left (x^{4} + 2 \, x^{3} + x^{2}\right )} - 4 \cdot 2^{\frac {1}{4}} \sqrt {x^{5} + x^{3}} x + 4 \, {\left (x^{5} + x^{3}\right )}^{\frac {3}{4}}}{x^{4} - 2 \, x^{3} + x^{2}}\right ) - i \cdot 2^{\frac {1}{4}} x \log \left (-\frac {4 \, \sqrt {2} {\left (x^{5} + x^{3}\right )}^{\frac {1}{4}} x^{2} - 2^{\frac {3}{4}} {\left (i \, x^{4} + 2 i \, x^{3} + i \, x^{2}\right )} + 4 i \cdot 2^{\frac {1}{4}} \sqrt {x^{5} + x^{3}} x - 4 \, {\left (x^{5} + x^{3}\right )}^{\frac {3}{4}}}{x^{4} - 2 \, x^{3} + x^{2}}\right ) + i \cdot 2^{\frac {1}{4}} x \log \left (-\frac {4 \, \sqrt {2} {\left (x^{5} + x^{3}\right )}^{\frac {1}{4}} x^{2} - 2^{\frac {3}{4}} {\left (-i \, x^{4} - 2 i \, x^{3} - i \, x^{2}\right )} - 4 i \cdot 2^{\frac {1}{4}} \sqrt {x^{5} + x^{3}} x - 4 \, {\left (x^{5} + x^{3}\right )}^{\frac {3}{4}}}{x^{4} - 2 \, x^{3} + x^{2}}\right ) - \left (-2\right )^{\frac {1}{4}} x \log \left (-\frac {4 \, \sqrt {-2} {\left (x^{5} + x^{3}\right )}^{\frac {1}{4}} x^{2} + \left (-2\right )^{\frac {3}{4}} {\left (x^{4} - 2 \, x^{3} + x^{2}\right )} - 4 \, \left (-2\right )^{\frac {1}{4}} \sqrt {x^{5} + x^{3}} x + 4 \, {\left (x^{5} + x^{3}\right )}^{\frac {3}{4}}}{x^{4} + 2 \, x^{3} + x^{2}}\right ) - i \, \left (-2\right )^{\frac {1}{4}} x \log \left (\frac {4 \, \sqrt {-2} {\left (x^{5} + x^{3}\right )}^{\frac {1}{4}} x^{2} + i \, \left (-2\right )^{\frac {3}{4}} {\left (x^{4} - 2 \, x^{3} + x^{2}\right )} + 4 i \, \left (-2\right )^{\frac {1}{4}} \sqrt {x^{5} + x^{3}} x - 4 \, {\left (x^{5} + x^{3}\right )}^{\frac {3}{4}}}{x^{4} + 2 \, x^{3} + x^{2}}\right ) + i \, \left (-2\right )^{\frac {1}{4}} x \log \left (\frac {4 \, \sqrt {-2} {\left (x^{5} + x^{3}\right )}^{\frac {1}{4}} x^{2} - i \, \left (-2\right )^{\frac {3}{4}} {\left (x^{4} - 2 \, x^{3} + x^{2}\right )} - 4 i \, \left (-2\right )^{\frac {1}{4}} \sqrt {x^{5} + x^{3}} x - 4 \, {\left (x^{5} + x^{3}\right )}^{\frac {3}{4}}}{x^{4} + 2 \, x^{3} + x^{2}}\right ) + \left (-2\right )^{\frac {1}{4}} x \log \left (-\frac {4 \, \sqrt {-2} {\left (x^{5} + x^{3}\right )}^{\frac {1}{4}} x^{2} - \left (-2\right )^{\frac {3}{4}} {\left (x^{4} - 2 \, x^{3} + x^{2}\right )} + 4 \, \left (-2\right )^{\frac {1}{4}} \sqrt {x^{5} + x^{3}} x + 4 \, {\left (x^{5} + x^{3}\right )}^{\frac {3}{4}}}{x^{4} + 2 \, x^{3} + x^{2}}\right ) - 16 \, {\left (x^{5} + x^{3}\right )}^{\frac {1}{4}}}{4 \, x} \]

input
integrate((x^2+1)*(x^5+x^3)^(1/4)/x^2/(x^2-1),x, algorithm="fricas")
 
output
-1/4*(2^(1/4)*x*log((4*sqrt(2)*(x^5 + x^3)^(1/4)*x^2 + 2^(3/4)*(x^4 + 2*x^ 
3 + x^2) + 4*2^(1/4)*sqrt(x^5 + x^3)*x + 4*(x^5 + x^3)^(3/4))/(x^4 - 2*x^3 
 + x^2)) - 2^(1/4)*x*log((4*sqrt(2)*(x^5 + x^3)^(1/4)*x^2 - 2^(3/4)*(x^4 + 
 2*x^3 + x^2) - 4*2^(1/4)*sqrt(x^5 + x^3)*x + 4*(x^5 + x^3)^(3/4))/(x^4 - 
2*x^3 + x^2)) - I*2^(1/4)*x*log(-(4*sqrt(2)*(x^5 + x^3)^(1/4)*x^2 - 2^(3/4 
)*(I*x^4 + 2*I*x^3 + I*x^2) + 4*I*2^(1/4)*sqrt(x^5 + x^3)*x - 4*(x^5 + x^3 
)^(3/4))/(x^4 - 2*x^3 + x^2)) + I*2^(1/4)*x*log(-(4*sqrt(2)*(x^5 + x^3)^(1 
/4)*x^2 - 2^(3/4)*(-I*x^4 - 2*I*x^3 - I*x^2) - 4*I*2^(1/4)*sqrt(x^5 + x^3) 
*x - 4*(x^5 + x^3)^(3/4))/(x^4 - 2*x^3 + x^2)) - (-2)^(1/4)*x*log(-(4*sqrt 
(-2)*(x^5 + x^3)^(1/4)*x^2 + (-2)^(3/4)*(x^4 - 2*x^3 + x^2) - 4*(-2)^(1/4) 
*sqrt(x^5 + x^3)*x + 4*(x^5 + x^3)^(3/4))/(x^4 + 2*x^3 + x^2)) - I*(-2)^(1 
/4)*x*log((4*sqrt(-2)*(x^5 + x^3)^(1/4)*x^2 + I*(-2)^(3/4)*(x^4 - 2*x^3 + 
x^2) + 4*I*(-2)^(1/4)*sqrt(x^5 + x^3)*x - 4*(x^5 + x^3)^(3/4))/(x^4 + 2*x^ 
3 + x^2)) + I*(-2)^(1/4)*x*log((4*sqrt(-2)*(x^5 + x^3)^(1/4)*x^2 - I*(-2)^ 
(3/4)*(x^4 - 2*x^3 + x^2) - 4*I*(-2)^(1/4)*sqrt(x^5 + x^3)*x - 4*(x^5 + x^ 
3)^(3/4))/(x^4 + 2*x^3 + x^2)) + (-2)^(1/4)*x*log(-(4*sqrt(-2)*(x^5 + x^3) 
^(1/4)*x^2 - (-2)^(3/4)*(x^4 - 2*x^3 + x^2) + 4*(-2)^(1/4)*sqrt(x^5 + x^3) 
*x + 4*(x^5 + x^3)^(3/4))/(x^4 + 2*x^3 + x^2)) - 16*(x^5 + x^3)^(1/4))/x
 
3.23.53.6 Sympy [F]

\[ \int \frac {\left (1+x^2\right ) \sqrt [4]{x^3+x^5}}{x^2 \left (-1+x^2\right )} \, dx=\int \frac {\sqrt [4]{x^{3} \left (x^{2} + 1\right )} \left (x^{2} + 1\right )}{x^{2} \left (x - 1\right ) \left (x + 1\right )}\, dx \]

input
integrate((x**2+1)*(x**5+x**3)**(1/4)/x**2/(x**2-1),x)
 
output
Integral((x**3*(x**2 + 1))**(1/4)*(x**2 + 1)/(x**2*(x - 1)*(x + 1)), x)
 
3.23.53.7 Maxima [F]

\[ \int \frac {\left (1+x^2\right ) \sqrt [4]{x^3+x^5}}{x^2 \left (-1+x^2\right )} \, dx=\int { \frac {{\left (x^{5} + x^{3}\right )}^{\frac {1}{4}} {\left (x^{2} + 1\right )}}{{\left (x^{2} - 1\right )} x^{2}} \,d x } \]

input
integrate((x^2+1)*(x^5+x^3)^(1/4)/x^2/(x^2-1),x, algorithm="maxima")
 
output
integrate((x^5 + x^3)^(1/4)*(x^2 + 1)/((x^2 - 1)*x^2), x)
 
3.23.53.8 Giac [F]

\[ \int \frac {\left (1+x^2\right ) \sqrt [4]{x^3+x^5}}{x^2 \left (-1+x^2\right )} \, dx=\int { \frac {{\left (x^{5} + x^{3}\right )}^{\frac {1}{4}} {\left (x^{2} + 1\right )}}{{\left (x^{2} - 1\right )} x^{2}} \,d x } \]

input
integrate((x^2+1)*(x^5+x^3)^(1/4)/x^2/(x^2-1),x, algorithm="giac")
 
output
integrate((x^5 + x^3)^(1/4)*(x^2 + 1)/((x^2 - 1)*x^2), x)
 
3.23.53.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (1+x^2\right ) \sqrt [4]{x^3+x^5}}{x^2 \left (-1+x^2\right )} \, dx=\int \frac {{\left (x^5+x^3\right )}^{1/4}\,\left (x^2+1\right )}{x^2\,\left (x^2-1\right )} \,d x \]

input
int(((x^3 + x^5)^(1/4)*(x^2 + 1))/(x^2*(x^2 - 1)),x)
 
output
int(((x^3 + x^5)^(1/4)*(x^2 + 1))/(x^2*(x^2 - 1)), x)