3.23.68 \(\int \frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}}{x} \, dx\) [2268]

3.23.68.1 Optimal result
3.23.68.2 Mathematica [A] (verified)
3.23.68.3 Rubi [A] (verified)
3.23.68.4 Maple [F]
3.23.68.5 Fricas [B] (verification not implemented)
3.23.68.6 Sympy [F]
3.23.68.7 Maxima [F]
3.23.68.8 Giac [F(-2)]
3.23.68.9 Mupad [F(-1)]

3.23.68.1 Optimal result

Integrand size = 31, antiderivative size = 172 \[ \int \frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}}{x} \, dx=-4 \sqrt {1-\sqrt {1-\sqrt {\frac {-1+x^2}{x^2}}}}+\sqrt {-1+\sqrt {2}} \arctan \left (\frac {\sqrt {1-\sqrt {1-\sqrt {\frac {-1+x^2}{x^2}}}}}{\sqrt {-1+\sqrt {2}}}\right )+2 \text {arctanh}\left (\sqrt {1-\sqrt {1-\sqrt {\frac {-1+x^2}{x^2}}}}\right )+\sqrt {1+\sqrt {2}} \text {arctanh}\left (\frac {\sqrt {1-\sqrt {1-\sqrt {\frac {-1+x^2}{x^2}}}}}{\sqrt {1+\sqrt {2}}}\right ) \]

output
-4*(1-(1-((x^2-1)/x^2)^(1/2))^(1/2))^(1/2)+(2^(1/2)-1)^(1/2)*arctan((1-(1- 
((x^2-1)/x^2)^(1/2))^(1/2))^(1/2)/(2^(1/2)-1)^(1/2))+2*arctanh((1-(1-((x^2 
-1)/x^2)^(1/2))^(1/2))^(1/2))+(1+2^(1/2))^(1/2)*arctanh((1-(1-((x^2-1)/x^2 
)^(1/2))^(1/2))^(1/2)/(1+2^(1/2))^(1/2))
 
3.23.68.2 Mathematica [A] (verified)

Time = 1.09 (sec) , antiderivative size = 164, normalized size of antiderivative = 0.95 \[ \int \frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}}{x} \, dx=-4 \sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}+\sqrt {-1+\sqrt {2}} \arctan \left (\sqrt {1+\sqrt {2}} \sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}\right )+2 \text {arctanh}\left (\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}\right )+\sqrt {1+\sqrt {2}} \text {arctanh}\left (\sqrt {-1+\sqrt {2}} \sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}\right ) \]

input
Integrate[Sqrt[1 - Sqrt[1 - Sqrt[1 - x^(-2)]]]/x,x]
 
output
-4*Sqrt[1 - Sqrt[1 - Sqrt[1 - x^(-2)]]] + Sqrt[-1 + Sqrt[2]]*ArcTan[Sqrt[1 
 + Sqrt[2]]*Sqrt[1 - Sqrt[1 - Sqrt[1 - x^(-2)]]]] + 2*ArcTanh[Sqrt[1 - Sqr 
t[1 - Sqrt[1 - x^(-2)]]]] + Sqrt[1 + Sqrt[2]]*ArcTanh[Sqrt[-1 + Sqrt[2]]*S 
qrt[1 - Sqrt[1 - Sqrt[1 - x^(-2)]]]]
 
3.23.68.3 Rubi [A] (verified)

Time = 1.30 (sec) , antiderivative size = 312, normalized size of antiderivative = 1.81, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.484, Rules used = {7282, 7267, 7267, 2003, 2351, 481, 25, 561, 654, 25, 1480, 217, 219, 1610, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}}{x} \, dx\)

\(\Big \downarrow \) 7282

\(\displaystyle -\frac {1}{2} \int \sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}} x^2d\frac {1}{x^2}\)

\(\Big \downarrow \) 7267

\(\displaystyle \int \frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}} \sqrt {1-\frac {1}{x^2}}}{1-\frac {1}{x^4}}d\sqrt {1-\frac {1}{x^2}}\)

\(\Big \downarrow \) 7267

\(\displaystyle -2 \int \frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}} \left (1-\frac {1}{x^4}\right ) x^2}{2-\frac {1}{x^4}}d\sqrt {1-\sqrt {1-\frac {1}{x^2}}}\)

\(\Big \downarrow \) 2003

\(\displaystyle -2 \int \frac {\left (1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}\right )^{3/2} \left (\sqrt {1-\sqrt {1-\frac {1}{x^2}}}+1\right ) x^2}{2-\frac {1}{x^4}}d\sqrt {1-\sqrt {1-\frac {1}{x^2}}}\)

\(\Big \downarrow \) 2351

\(\displaystyle -2 \left (\int \frac {\left (1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}\right )^{3/2}}{2-\frac {1}{x^4}}d\sqrt {1-\sqrt {1-\frac {1}{x^2}}}+\int \frac {\left (1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}\right )^{3/2} x^2}{2-\frac {1}{x^4}}d\sqrt {1-\sqrt {1-\frac {1}{x^2}}}\right )\)

\(\Big \downarrow \) 481

\(\displaystyle -2 \left (-\int -\frac {3-2 \sqrt {1-\sqrt {1-\frac {1}{x^2}}}}{\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}} \left (2-\frac {1}{x^4}\right )}d\sqrt {1-\sqrt {1-\frac {1}{x^2}}}+\int \frac {\left (1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}\right )^{3/2} x^2}{2-\frac {1}{x^4}}d\sqrt {1-\sqrt {1-\frac {1}{x^2}}}+2 \sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle -2 \left (\int \frac {3-2 \sqrt {1-\sqrt {1-\frac {1}{x^2}}}}{\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}} \left (2-\frac {1}{x^4}\right )}d\sqrt {1-\sqrt {1-\frac {1}{x^2}}}+\int \frac {\left (1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}\right )^{3/2} x^2}{2-\frac {1}{x^4}}d\sqrt {1-\sqrt {1-\frac {1}{x^2}}}+2 \sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}\right )\)

\(\Big \downarrow \) 561

\(\displaystyle -2 \left (\int \frac {3-2 \sqrt {1-\sqrt {1-\frac {1}{x^2}}}}{\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}} \left (2-\frac {1}{x^4}\right )}d\sqrt {1-\sqrt {1-\frac {1}{x^2}}}-2 \int \frac {1}{\left (1-\frac {1}{x^4}\right ) \left (1+\frac {2}{x^4}-\frac {1}{x^8}\right ) x^8}d\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}+2 \sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}\right )\)

\(\Big \downarrow \) 654

\(\displaystyle -2 \left (2 \int -\frac {1+\frac {2}{x^4}}{1+\frac {2}{x^4}-\frac {1}{x^8}}d\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}-2 \int \frac {1}{\left (1-\frac {1}{x^4}\right ) \left (1+\frac {2}{x^4}-\frac {1}{x^8}\right ) x^8}d\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}+2 \sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle -2 \left (-2 \int \frac {1+\frac {2}{x^4}}{1+\frac {2}{x^4}-\frac {1}{x^8}}d\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}-2 \int \frac {1}{\left (1-\frac {1}{x^4}\right ) \left (1+\frac {2}{x^4}-\frac {1}{x^8}\right ) x^8}d\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}+2 \sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}\right )\)

\(\Big \downarrow \) 1480

\(\displaystyle -2 \left (2 \left (-\frac {1}{4} \left (4-3 \sqrt {2}\right ) \int \frac {1}{-\sqrt {2}+1-\frac {1}{x^4}}d\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}-\frac {1}{4} \left (4+3 \sqrt {2}\right ) \int \frac {1}{\sqrt {2}+1-\frac {1}{x^4}}d\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}\right )-2 \int \frac {1}{\left (1-\frac {1}{x^4}\right ) \left (1+\frac {2}{x^4}-\frac {1}{x^8}\right ) x^8}d\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}+2 \sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle -2 \left (2 \left (\frac {\left (4-3 \sqrt {2}\right ) \arctan \left (\frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}}{\sqrt {\sqrt {2}-1}}\right )}{4 \sqrt {\sqrt {2}-1}}-\frac {1}{4} \left (4+3 \sqrt {2}\right ) \int \frac {1}{\sqrt {2}+1-\frac {1}{x^4}}d\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}\right )-2 \int \frac {1}{\left (1-\frac {1}{x^4}\right ) \left (1+\frac {2}{x^4}-\frac {1}{x^8}\right ) x^8}d\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}+2 \sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle -2 \left (-2 \int \frac {1}{\left (1-\frac {1}{x^4}\right ) \left (1+\frac {2}{x^4}-\frac {1}{x^8}\right ) x^8}d\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}+2 \left (\frac {\left (4-3 \sqrt {2}\right ) \arctan \left (\frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}}{\sqrt {\sqrt {2}-1}}\right )}{4 \sqrt {\sqrt {2}-1}}-\frac {\left (4+3 \sqrt {2}\right ) \text {arctanh}\left (\frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}}{\sqrt {1+\sqrt {2}}}\right )}{4 \sqrt {1+\sqrt {2}}}\right )+2 \sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}\right )\)

\(\Big \downarrow \) 1610

\(\displaystyle -2 \left (-2 \int \left (\frac {1+\frac {3}{x^4}}{2 \left (-1-\frac {2}{x^4}+\frac {1}{x^8}\right )}-\frac {1}{2 \left (\frac {1}{x^4}-1\right )}\right )d\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}+2 \left (\frac {\left (4-3 \sqrt {2}\right ) \arctan \left (\frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}}{\sqrt {\sqrt {2}-1}}\right )}{4 \sqrt {\sqrt {2}-1}}-\frac {\left (4+3 \sqrt {2}\right ) \text {arctanh}\left (\frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}}{\sqrt {1+\sqrt {2}}}\right )}{4 \sqrt {1+\sqrt {2}}}\right )+2 \sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle -2 \left (2 \left (\frac {\left (4-3 \sqrt {2}\right ) \arctan \left (\frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}}{\sqrt {\sqrt {2}-1}}\right )}{4 \sqrt {\sqrt {2}-1}}-\frac {\left (4+3 \sqrt {2}\right ) \text {arctanh}\left (\frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}}{\sqrt {1+\sqrt {2}}}\right )}{4 \sqrt {1+\sqrt {2}}}\right )-2 \left (\frac {1}{4} \sqrt {5 \sqrt {2}-7} \arctan \left (\frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}}{\sqrt {\sqrt {2}-1}}\right )+\frac {1}{2} \text {arctanh}\left (\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}\right )-\frac {1}{4} \sqrt {7+5 \sqrt {2}} \text {arctanh}\left (\frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}}{\sqrt {1+\sqrt {2}}}\right )\right )+2 \sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}\right )\)

input
Int[Sqrt[1 - Sqrt[1 - Sqrt[1 - x^(-2)]]]/x,x]
 
output
-2*(2*Sqrt[1 - Sqrt[1 - Sqrt[1 - x^(-2)]]] + 2*(((4 - 3*Sqrt[2])*ArcTan[Sq 
rt[1 - Sqrt[1 - Sqrt[1 - x^(-2)]]]/Sqrt[-1 + Sqrt[2]]])/(4*Sqrt[-1 + Sqrt[ 
2]]) - ((4 + 3*Sqrt[2])*ArcTanh[Sqrt[1 - Sqrt[1 - Sqrt[1 - x^(-2)]]]/Sqrt[ 
1 + Sqrt[2]]])/(4*Sqrt[1 + Sqrt[2]])) - 2*((Sqrt[-7 + 5*Sqrt[2]]*ArcTan[Sq 
rt[1 - Sqrt[1 - Sqrt[1 - x^(-2)]]]/Sqrt[-1 + Sqrt[2]]])/4 + ArcTanh[Sqrt[1 
 - Sqrt[1 - Sqrt[1 - x^(-2)]]]]/2 - (Sqrt[7 + 5*Sqrt[2]]*ArcTanh[Sqrt[1 - 
Sqrt[1 - Sqrt[1 - x^(-2)]]]/Sqrt[1 + Sqrt[2]]])/4))
 

3.23.68.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 481
Int[((c_) + (d_.)*(x_))^(n_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[d*((c 
 + d*x)^(n - 1)/(b*(n - 1))), x] + Simp[1/b   Int[(c + d*x)^(n - 2)*(Simp[b 
*c^2 - a*d^2 + 2*b*c*d*x, x]/(a + b*x^2)), x], x] /; FreeQ[{a, b, c, d}, x] 
 && GtQ[n, 1]
 

rule 561
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbo 
l] :> With[{k = Denominator[n]}, Simp[k/d   Subst[Int[x^(k*(n + 1) - 1)*(-c 
/d + x^k/d)^m*Simp[(b*c^2 + a*d^2)/d^2 - 2*b*c*(x^k/d^2) + b*(x^(2*k)/d^2), 
 x]^p, x], x, (c + d*x)^(1/k)], x]] /; FreeQ[{a, b, c, d, m, p}, x] && Frac 
tionQ[n] && IntegerQ[p] && IntegerQ[m]
 

rule 654
Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_) + (c_.)*(x_)^2)), 
x_Symbol] :> Simp[2   Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 + a*e^2 - 2*c*d* 
x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1610
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.))/((a_) + (b_.)*(x_)^2 + 
 (c_.)*(x_)^4), x_Symbol] :> Int[ExpandIntegrand[(f*x)^m*((d + e*x^2)^q/(a 
+ b*x^2 + c*x^4)), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^2 - 4 
*a*c, 0] && IntegerQ[q] && IntegerQ[m]
 

rule 2003
Int[(u_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] : 
> Int[u*(c + d*x)^(n + p)*(a/c + (b/d)*x)^p, x] /; FreeQ[{a, b, c, d, n, p} 
, x] && EqQ[b*c^2 + a*d^2, 0] && (IntegerQ[p] || (GtQ[a, 0] && GtQ[c, 0] && 
  !IntegerQ[n]))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2351
Int[((Px_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_.))/(x_), x_S 
ymbol] :> Int[PolynomialQuotient[Px, x, x]*(c + d*x)^n*(a + b*x^2)^p, x] + 
Simp[PolynomialRemainder[Px, x, x]   Int[(c + d*x)^n*((a + b*x^2)^p/x), x], 
 x] /; FreeQ[{a, b, c, d, n, p}, x] && PolynomialQ[Px, x]
 

rule 7267
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfLinear[u, x]}, Si 
mp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/lst[[2]])], x 
] /;  !FalseQ[lst] && SubstForFractionalPowerQ[u, lst[[3]], x]]
 

rule 7282
Int[(u_)/(x_), x_Symbol] :> With[{lst = PowerVariableExpn[u, 0, x]}, Simp[1 
/lst[[2]]   Subst[Int[NormalizeIntegrand[Simplify[lst[[1]]/x], x], x], x, ( 
lst[[3]]*x)^lst[[2]]], x] /;  !FalseQ[lst] && NeQ[lst[[2]], 0]] /; NonsumQ[ 
u] &&  !RationalFunctionQ[u, x]
 
3.23.68.4 Maple [F]

\[\int \frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^{2}}}}}}{x}d x\]

input
int((1-(1-(1-1/x^2)^(1/2))^(1/2))^(1/2)/x,x)
 
output
int((1-(1-(1-1/x^2)^(1/2))^(1/2))^(1/2)/x,x)
 
3.23.68.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1213 vs. \(2 (132) = 264\).

Time = 114.42 (sec) , antiderivative size = 1213, normalized size of antiderivative = 7.05 \[ \int \frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}}{x} \, dx=\text {Too large to display} \]

input
integrate((1-(1-(1-1/x^2)^(1/2))^(1/2))^(1/2)/x,x, algorithm="fricas")
 
output
1/4*sqrt(sqrt(2) + 1)*log(4*(479*sqrt(2)*x^2 + 710*x^2 - (479*sqrt(2)*x^2 
+ 710*x^2)*sqrt((x^2 - 1)/x^2))*sqrt(sqrt(2) + 1)*sqrt(-sqrt((x^2 - 1)/x^2 
) + 1) - 2*(1916*x^2 + sqrt(2)*(1420*x^2 - 231) - 4*(355*sqrt(2)*x^2 + 479 
*x^2)*sqrt((x^2 - 1)/x^2) - 248)*sqrt(sqrt(2) + 1) - 4*(710*sqrt(2)*x^2 + 
958*x^2 - (479*sqrt(2)*x^2 + 710*x^2 - (479*sqrt(2)*x^2 + 710*x^2)*sqrt((x 
^2 - 1)/x^2))*sqrt(-sqrt((x^2 - 1)/x^2) + 1) - 2*(355*sqrt(2)*x^2 + 479*x^ 
2)*sqrt((x^2 - 1)/x^2))*sqrt(-sqrt(-sqrt((x^2 - 1)/x^2) + 1) + 1)) - 1/4*s 
qrt(sqrt(2) + 1)*log(-4*(479*sqrt(2)*x^2 + 710*x^2 - (479*sqrt(2)*x^2 + 71 
0*x^2)*sqrt((x^2 - 1)/x^2))*sqrt(sqrt(2) + 1)*sqrt(-sqrt((x^2 - 1)/x^2) + 
1) + 2*(1916*x^2 + sqrt(2)*(1420*x^2 - 231) - 4*(355*sqrt(2)*x^2 + 479*x^2 
)*sqrt((x^2 - 1)/x^2) - 248)*sqrt(sqrt(2) + 1) - 4*(710*sqrt(2)*x^2 + 958* 
x^2 - (479*sqrt(2)*x^2 + 710*x^2 - (479*sqrt(2)*x^2 + 710*x^2)*sqrt((x^2 - 
 1)/x^2))*sqrt(-sqrt((x^2 - 1)/x^2) + 1) - 2*(355*sqrt(2)*x^2 + 479*x^2)*s 
qrt((x^2 - 1)/x^2))*sqrt(-sqrt(-sqrt((x^2 - 1)/x^2) + 1) + 1)) - 1/8*sqrt( 
-4*sqrt(2) + 4)*log(4*(355*sqrt(2)*x^2 - 479*x^2)*sqrt(-4*sqrt(2) + 4)*sqr 
t((x^2 - 1)/x^2) + (1916*x^2 - sqrt(2)*(1420*x^2 - 231) - 248)*sqrt(-4*sqr 
t(2) + 4) + 4*(710*sqrt(2)*x^2 - 958*x^2 - (479*sqrt(2)*x^2 - 710*x^2 - (4 
79*sqrt(2)*x^2 - 710*x^2)*sqrt((x^2 - 1)/x^2))*sqrt(-sqrt((x^2 - 1)/x^2) + 
 1) - 2*(355*sqrt(2)*x^2 - 479*x^2)*sqrt((x^2 - 1)/x^2))*sqrt(-sqrt(-sqrt( 
(x^2 - 1)/x^2) + 1) + 1) - 2*((479*sqrt(2)*x^2 - 710*x^2)*sqrt(-4*sqrt(...
 
3.23.68.6 Sympy [F]

\[ \int \frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}}{x} \, dx=\int \frac {\sqrt {1 - \sqrt {1 - \sqrt {1 - \frac {1}{x^{2}}}}}}{x}\, dx \]

input
integrate((1-(1-(1-1/x**2)**(1/2))**(1/2))**(1/2)/x,x)
 
output
Integral(sqrt(1 - sqrt(1 - sqrt(1 - 1/x**2)))/x, x)
 
3.23.68.7 Maxima [F]

\[ \int \frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}}{x} \, dx=\int { \frac {\sqrt {-\sqrt {-\sqrt {-\frac {1}{x^{2}} + 1} + 1} + 1}}{x} \,d x } \]

input
integrate((1-(1-(1-1/x^2)^(1/2))^(1/2))^(1/2)/x,x, algorithm="maxima")
 
output
integrate(sqrt(-sqrt(-sqrt(-1/x^2 + 1) + 1) + 1)/x, x)
 
3.23.68.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}}{x} \, dx=\text {Exception raised: TypeError} \]

input
integrate((1-(1-(1-1/x^2)^(1/2))^(1/2))^(1/2)/x,x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error index.cc index_gcd Error: Bad 
 Argument ValueError index.cc index_gcd Error: Bad Argument ValueError ind 
ex.cc ind
 
3.23.68.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}}{x} \, dx=\int \frac {\sqrt {1-\sqrt {1-\sqrt {1-\frac {1}{x^2}}}}}{x} \,d x \]

input
int((1 - (1 - (1 - 1/x^2)^(1/2))^(1/2))^(1/2)/x,x)
 
output
int((1 - (1 - (1 - 1/x^2)^(1/2))^(1/2))^(1/2)/x, x)