3.23.74 \(\int \frac {x^2 \sqrt [4]{x^3+x^4}}{-1+x^4} \, dx\) [2274]

3.23.74.1 Optimal result
3.23.74.2 Mathematica [A] (verified)
3.23.74.3 Rubi [C] (verified)
3.23.74.4 Maple [N/A] (verified)
3.23.74.5 Fricas [C] (verification not implemented)
3.23.74.6 Sympy [N/A]
3.23.74.7 Maxima [N/A]
3.23.74.8 Giac [C] (verification not implemented)
3.23.74.9 Mupad [N/A]

3.23.74.1 Optimal result

Integrand size = 22, antiderivative size = 173 \[ \int \frac {x^2 \sqrt [4]{x^3+x^4}}{-1+x^4} \, dx=-2 \arctan \left (\frac {x}{\sqrt [4]{x^3+x^4}}\right )+\frac {\arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^3+x^4}}\right )}{2^{3/4}}+2 \text {arctanh}\left (\frac {x}{\sqrt [4]{x^3+x^4}}\right )-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^3+x^4}}\right )}{2^{3/4}}-\frac {1}{4} \text {RootSum}\left [2-2 \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-2 \log (x)+2 \log \left (\sqrt [4]{x^3+x^4}-x \text {$\#$1}\right )+\log (x) \text {$\#$1}^4-\log \left (\sqrt [4]{x^3+x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4}{-\text {$\#$1}^3+\text {$\#$1}^7}\&\right ] \]

output
Unintegrable
 
3.23.74.2 Mathematica [A] (verified)

Time = 0.37 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.12 \[ \int \frac {x^2 \sqrt [4]{x^3+x^4}}{-1+x^4} \, dx=-\frac {x^{9/4} (1+x)^{3/4} \left (8 \left (4 \arctan \left (\sqrt [4]{\frac {x}{1+x}}\right )-\sqrt [4]{2} \arctan \left (\sqrt [4]{2} \sqrt [4]{\frac {x}{1+x}}\right )-4 \text {arctanh}\left (\sqrt [4]{\frac {x}{1+x}}\right )+\sqrt [4]{2} \text {arctanh}\left (\sqrt [4]{2} \sqrt [4]{\frac {x}{1+x}}\right )\right )+\text {RootSum}\left [2-2 \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-2 \log (x)+8 \log \left (\sqrt [4]{1+x}-\sqrt [4]{x} \text {$\#$1}\right )+\log (x) \text {$\#$1}^4-4 \log \left (\sqrt [4]{1+x}-\sqrt [4]{x} \text {$\#$1}\right ) \text {$\#$1}^4}{-\text {$\#$1}^3+\text {$\#$1}^7}\&\right ]\right )}{16 \left (x^3 (1+x)\right )^{3/4}} \]

input
Integrate[(x^2*(x^3 + x^4)^(1/4))/(-1 + x^4),x]
 
output
-1/16*(x^(9/4)*(1 + x)^(3/4)*(8*(4*ArcTan[(x/(1 + x))^(1/4)] - 2^(1/4)*Arc 
Tan[2^(1/4)*(x/(1 + x))^(1/4)] - 4*ArcTanh[(x/(1 + x))^(1/4)] + 2^(1/4)*Ar 
cTanh[2^(1/4)*(x/(1 + x))^(1/4)]) + RootSum[2 - 2*#1^4 + #1^8 & , (-2*Log[ 
x] + 8*Log[(1 + x)^(1/4) - x^(1/4)*#1] + Log[x]*#1^4 - 4*Log[(1 + x)^(1/4) 
 - x^(1/4)*#1]*#1^4)/(-#1^3 + #1^7) & ]))/(x^3*(1 + x))^(3/4)
 
3.23.74.3 Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 1.59 (sec) , antiderivative size = 374, normalized size of antiderivative = 2.16, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {2467, 25, 2019, 2035, 2461, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \sqrt [4]{x^4+x^3}}{x^4-1} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt [4]{x^4+x^3} \int -\frac {x^{11/4} \sqrt [4]{x+1}}{1-x^4}dx}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \int \frac {x^{11/4} \sqrt [4]{x+1}}{1-x^4}dx}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 2019

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \int \frac {x^{11/4}}{(x+1)^{3/4} \left (-x^3+x^2-x+1\right )}dx}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {4 \sqrt [4]{x^4+x^3} \int \frac {x^{7/2}}{(x+1)^{3/4} \left (-x^3+x^2-x+1\right )}d\sqrt [4]{x}}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 2461

\(\displaystyle -\frac {4 \sqrt [4]{x^4+x^3} \int \left (-\frac {x^{7/2}}{4 \left (\sqrt {x}-1\right ) (x+1)^{3/4}}+\frac {x^{7/2}}{4 \left (\sqrt {x}+1\right ) (x+1)^{3/4}}+\frac {\sqrt [4]{x+1} x^{7/2}}{2 \left (x^2+1\right )}\right )d\sqrt [4]{x}}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {4 \sqrt [4]{x^4+x^3} \left (\frac {1}{2} \arctan \left (\frac {\sqrt [4]{x}}{\sqrt [4]{x+1}}\right )-\frac {1}{16} (1-i)^{5/4} \arctan \left (\frac {\sqrt [4]{1-i} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )-\frac {\arctan \left (\frac {\sqrt [4]{1-i} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{8 (1-i)^{3/4}}-\frac {1}{16} (1+i)^{5/4} \arctan \left (\frac {\sqrt [4]{1+i} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )-\frac {\arctan \left (\frac {\sqrt [4]{1+i} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{8 (1+i)^{3/4}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{4\ 2^{3/4}}-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [4]{x}}{\sqrt [4]{x+1}}\right )+\frac {1}{16} (1-i)^{5/4} \text {arctanh}\left (\frac {\sqrt [4]{1-i} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )+\frac {\text {arctanh}\left (\frac {\sqrt [4]{1-i} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{8 (1-i)^{3/4}}+\frac {1}{16} (1+i)^{5/4} \text {arctanh}\left (\frac {\sqrt [4]{1+i} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )+\frac {\text {arctanh}\left (\frac {\sqrt [4]{1+i} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{8 (1+i)^{3/4}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{4\ 2^{3/4}}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

input
Int[(x^2*(x^3 + x^4)^(1/4))/(-1 + x^4),x]
 
output
(-4*(x^3 + x^4)^(1/4)*(ArcTan[x^(1/4)/(1 + x)^(1/4)]/2 - ArcTan[((1 - I)^( 
1/4)*x^(1/4))/(1 + x)^(1/4)]/(8*(1 - I)^(3/4)) - ((1 - I)^(5/4)*ArcTan[((1 
 - I)^(1/4)*x^(1/4))/(1 + x)^(1/4)])/16 - ArcTan[((1 + I)^(1/4)*x^(1/4))/( 
1 + x)^(1/4)]/(8*(1 + I)^(3/4)) - ((1 + I)^(5/4)*ArcTan[((1 + I)^(1/4)*x^( 
1/4))/(1 + x)^(1/4)])/16 - ArcTan[(2^(1/4)*x^(1/4))/(1 + x)^(1/4)]/(4*2^(3 
/4)) - ArcTanh[x^(1/4)/(1 + x)^(1/4)]/2 + ArcTanh[((1 - I)^(1/4)*x^(1/4))/ 
(1 + x)^(1/4)]/(8*(1 - I)^(3/4)) + ((1 - I)^(5/4)*ArcTanh[((1 - I)^(1/4)*x 
^(1/4))/(1 + x)^(1/4)])/16 + ArcTanh[((1 + I)^(1/4)*x^(1/4))/(1 + x)^(1/4) 
]/(8*(1 + I)^(3/4)) + ((1 + I)^(5/4)*ArcTanh[((1 + I)^(1/4)*x^(1/4))/(1 + 
x)^(1/4)])/16 + ArcTanh[(2^(1/4)*x^(1/4))/(1 + x)^(1/4)]/(4*2^(3/4))))/(x^ 
(3/4)*(1 + x)^(1/4))
 

3.23.74.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2019
Int[(u_.)*(Px_)^(p_.)*(Qx_)^(q_.), x_Symbol] :> Int[u*PolynomialQuotient[Px 
, Qx, x]^p*Qx^(p + q), x] /; FreeQ[q, x] && PolyQ[Px, x] && PolyQ[Qx, x] && 
 EqQ[PolynomialRemainder[Px, Qx, x], 0] && IntegerQ[p] && LtQ[p*q, 0]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2461
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{Qx = Factor[Px /. x -> Sqrt[x]]}, 
Int[ExpandIntegrand[u, (Qx /. x -> x^2)^p, x], x] /;  !SumQ[NonfreeFactors[ 
Qx, x]]] /; PolyQ[Px, x^2] && GtQ[Expon[Px, x], 2] &&  !BinomialQ[Px, x] && 
  !TrinomialQ[Px, x] && ILtQ[p, 0]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 
3.23.74.4 Maple [N/A] (verified)

Time = 37.91 (sec) , antiderivative size = 172, normalized size of antiderivative = 0.99

method result size
pseudoelliptic \(-\frac {\ln \left (\frac {-2^{\frac {1}{4}} x -\left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}{2^{\frac {1}{4}} x -\left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}\right ) 2^{\frac {1}{4}}}{4}-\frac {\arctan \left (\frac {2^{\frac {3}{4}} \left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}{2 x}\right ) 2^{\frac {1}{4}}}{2}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-2 \textit {\_Z}^{4}+2\right )}{\sum }\frac {\left (\textit {\_R}^{4}-2\right ) \ln \left (\frac {-\textit {\_R} x +\left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R}^{3} \left (\textit {\_R}^{4}-1\right )}\right )}{4}+\ln \left (\frac {x +\left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}{x}\right )-\ln \left (\frac {\left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}-x}{x}\right )+2 \arctan \left (\frac {\left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}{x}\right )\) \(172\)
trager \(\text {Expression too large to display}\) \(3984\)

input
int(x^2*(x^4+x^3)^(1/4)/(x^4-1),x,method=_RETURNVERBOSE)
 
output
-1/4*ln((-2^(1/4)*x-(x^3*(1+x))^(1/4))/(2^(1/4)*x-(x^3*(1+x))^(1/4)))*2^(1 
/4)-1/2*arctan(1/2*2^(3/4)/x*(x^3*(1+x))^(1/4))*2^(1/4)+1/4*sum((_R^4-2)*l 
n((-_R*x+(x^3*(1+x))^(1/4))/x)/_R^3/(_R^4-1),_R=RootOf(_Z^8-2*_Z^4+2))+ln( 
(x+(x^3*(1+x))^(1/4))/x)-ln(((x^3*(1+x))^(1/4)-x)/x)+2*arctan((x^3*(1+x))^ 
(1/4)/x)
 
3.23.74.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.32 (sec) , antiderivative size = 409, normalized size of antiderivative = 2.36 \[ \int \frac {x^2 \sqrt [4]{x^3+x^4}}{-1+x^4} \, dx=-\frac {1}{16} \cdot 8^{\frac {3}{4}} \log \left (\frac {8^{\frac {3}{4}} x + 4 \, {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{16} \cdot 8^{\frac {3}{4}} \log \left (-\frac {8^{\frac {3}{4}} x - 4 \, {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{16} i \cdot 8^{\frac {3}{4}} \log \left (\frac {i \cdot 8^{\frac {3}{4}} x + 4 \, {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{16} i \cdot 8^{\frac {3}{4}} \log \left (\frac {-i \cdot 8^{\frac {3}{4}} x + 4 \, {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{4} \, \sqrt {-\sqrt {i + 1}} \log \left (\frac {x \sqrt {-\sqrt {i + 1}} + {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{4} \, \sqrt {-\sqrt {i + 1}} \log \left (-\frac {x \sqrt {-\sqrt {i + 1}} - {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{4} \, \sqrt {-\sqrt {-i + 1}} \log \left (\frac {x \sqrt {-\sqrt {-i + 1}} + {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{4} \, \sqrt {-\sqrt {-i + 1}} \log \left (-\frac {x \sqrt {-\sqrt {-i + 1}} - {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{4} \, \left (i + 1\right )^{\frac {1}{4}} \log \left (\frac {\left (i + 1\right )^{\frac {1}{4}} x + {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{4} \, \left (i + 1\right )^{\frac {1}{4}} \log \left (-\frac {\left (i + 1\right )^{\frac {1}{4}} x - {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{4} \, \left (-i + 1\right )^{\frac {1}{4}} \log \left (\frac {\left (-i + 1\right )^{\frac {1}{4}} x + {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{4} \, \left (-i + 1\right )^{\frac {1}{4}} \log \left (-\frac {\left (-i + 1\right )^{\frac {1}{4}} x - {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + 2 \, \arctan \left (\frac {{\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + \log \left (\frac {x + {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - \log \left (-\frac {x - {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) \]

input
integrate(x^2*(x^4+x^3)^(1/4)/(x^4-1),x, algorithm="fricas")
 
output
-1/16*8^(3/4)*log((8^(3/4)*x + 4*(x^4 + x^3)^(1/4))/x) + 1/16*8^(3/4)*log( 
-(8^(3/4)*x - 4*(x^4 + x^3)^(1/4))/x) - 1/16*I*8^(3/4)*log((I*8^(3/4)*x + 
4*(x^4 + x^3)^(1/4))/x) + 1/16*I*8^(3/4)*log((-I*8^(3/4)*x + 4*(x^4 + x^3) 
^(1/4))/x) - 1/4*sqrt(-sqrt(I + 1))*log((x*sqrt(-sqrt(I + 1)) + (x^4 + x^3 
)^(1/4))/x) + 1/4*sqrt(-sqrt(I + 1))*log(-(x*sqrt(-sqrt(I + 1)) - (x^4 + x 
^3)^(1/4))/x) - 1/4*sqrt(-sqrt(-I + 1))*log((x*sqrt(-sqrt(-I + 1)) + (x^4 
+ x^3)^(1/4))/x) + 1/4*sqrt(-sqrt(-I + 1))*log(-(x*sqrt(-sqrt(-I + 1)) - ( 
x^4 + x^3)^(1/4))/x) - 1/4*(I + 1)^(1/4)*log(((I + 1)^(1/4)*x + (x^4 + x^3 
)^(1/4))/x) + 1/4*(I + 1)^(1/4)*log(-((I + 1)^(1/4)*x - (x^4 + x^3)^(1/4)) 
/x) - 1/4*(-I + 1)^(1/4)*log(((-I + 1)^(1/4)*x + (x^4 + x^3)^(1/4))/x) + 1 
/4*(-I + 1)^(1/4)*log(-((-I + 1)^(1/4)*x - (x^4 + x^3)^(1/4))/x) + 2*arcta 
n((x^4 + x^3)^(1/4)/x) + log((x + (x^4 + x^3)^(1/4))/x) - log(-(x - (x^4 + 
 x^3)^(1/4))/x)
 
3.23.74.6 Sympy [N/A]

Not integrable

Time = 0.48 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.15 \[ \int \frac {x^2 \sqrt [4]{x^3+x^4}}{-1+x^4} \, dx=\int \frac {x^{2} \sqrt [4]{x^{3} \left (x + 1\right )}}{\left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right )}\, dx \]

input
integrate(x**2*(x**4+x**3)**(1/4)/(x**4-1),x)
 
output
Integral(x**2*(x**3*(x + 1))**(1/4)/((x - 1)*(x + 1)*(x**2 + 1)), x)
 
3.23.74.7 Maxima [N/A]

Not integrable

Time = 0.30 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.13 \[ \int \frac {x^2 \sqrt [4]{x^3+x^4}}{-1+x^4} \, dx=\int { \frac {{\left (x^{4} + x^{3}\right )}^{\frac {1}{4}} x^{2}}{x^{4} - 1} \,d x } \]

input
integrate(x^2*(x^4+x^3)^(1/4)/(x^4-1),x, algorithm="maxima")
 
output
integrate((x^4 + x^3)^(1/4)*x^2/(x^4 - 1), x)
 
3.23.74.8 Giac [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.32 (sec) , antiderivative size = 257, normalized size of antiderivative = 1.49 \[ \int \frac {x^2 \sqrt [4]{x^3+x^4}}{-1+x^4} \, dx=\text {Too large to display} \]

input
integrate(x^2*(x^4+x^3)^(1/4)/(x^4-1),x, algorithm="giac")
 
output
-1/2*2^(1/4)*arctan(1/2*2^(3/4)*(1/x + 1)^(1/4)) - 1/4*2^(1/4)*log(2^(1/4) 
 + (1/x + 1)^(1/4)) + 2*(-1/4096*I + 1/4096)^(1/4)*log(I*(9807971461541688 
6934934209737619787751599303819750539264*I - 98079714615416886934934209737 
619787751599303819750539264)^(1/4) - (70368744177664*I - 70368744177664)*( 
1/x + 1)^(1/4)) - 2*(-1/4096*I + 1/4096)^(1/4)*log(I*(98079714615416886934 
934209737619787751599303819750539264*I - 980797146154168869349342097376197 
87751599303819750539264)^(1/4) + (70368744177664*I - 70368744177664)*(1/x 
+ 1)^(1/4)) - 2*I*(1/4096*I + 1/4096)^(1/4)*log(I*(-9807971461541688693493 
4209737619787751599303819750539264*I - 98079714615416886934934209737619787 
751599303819750539264)^(1/4) - (70368744177664*I - 70368744177664)*(1/x + 
1)^(1/4)) + 2*I*(1/4096*I + 1/4096)^(1/4)*log(I*(-980797146154168869349342 
09737619787751599303819750539264*I - 9807971461541688693493420973761978775 
1599303819750539264)^(1/4) + (70368744177664*I - 70368744177664)*(1/x + 1) 
^(1/4)) + 2*(1/4096*I + 1/4096)^(1/4)*log(-I*(-980797146154168869349342097 
37619787751599303819750539264*I - 9807971461541688693493420973761978775159 
9303819750539264)^(1/4) + (70368744177664*I + 70368744177664)*(1/x + 1)^(1 
/4)) - 2*(1/4096*I + 1/4096)^(1/4)*log(-I*(-980797146154168869349342097376 
19787751599303819750539264*I - 9807971461541688693493420973761978775159930 
3819750539264)^(1/4) - (70368744177664*I + 70368744177664)*(1/x + 1)^(1/4) 
) + 16*I*(-1/16777216*I + 1/16777216)^(1/4)*log(-I*(1503067252975253265...
 
3.23.74.9 Mupad [N/A]

Not integrable

Time = 5.98 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.13 \[ \int \frac {x^2 \sqrt [4]{x^3+x^4}}{-1+x^4} \, dx=\int \frac {x^2\,{\left (x^4+x^3\right )}^{1/4}}{x^4-1} \,d x \]

input
int((x^2*(x^3 + x^4)^(1/4))/(x^4 - 1),x)
 
output
int((x^2*(x^3 + x^4)^(1/4))/(x^4 - 1), x)