3.23.91 \(\int \frac {1}{x \sqrt [3]{3+3 x+x^2}} \, dx\) [2291]

3.23.91.1 Optimal result
3.23.91.2 Mathematica [A] (verified)
3.23.91.3 Rubi [A] (verified)
3.23.91.4 Maple [C] (warning: unable to verify)
3.23.91.5 Fricas [A] (verification not implemented)
3.23.91.6 Sympy [F]
3.23.91.7 Maxima [F]
3.23.91.8 Giac [F]
3.23.91.9 Mupad [F(-1)]

3.23.91.1 Optimal result

Integrand size = 16, antiderivative size = 175 \[ \int \frac {1}{x \sqrt [3]{3+3 x+x^2}} \, dx=-\frac {\arctan \left (\frac {\frac {2}{\sqrt [6]{3}}+\frac {2 x}{3 \sqrt [6]{3}}+\frac {\sqrt [3]{3+3 x+x^2}}{\sqrt {3}}}{\sqrt [3]{3+3 x+x^2}}\right )}{3^{5/6}}+\frac {\log \left (3 \sqrt [3]{3}+\sqrt [3]{3} x-3 \sqrt [3]{3+3 x+x^2}\right )}{3 \sqrt [3]{3}}-\frac {\log \left (9\ 3^{2/3}+6\ 3^{2/3} x+3^{2/3} x^2+\left (9 \sqrt [3]{3}+3 \sqrt [3]{3} x\right ) \sqrt [3]{3+3 x+x^2}+9 \left (3+3 x+x^2\right )^{2/3}\right )}{6 \sqrt [3]{3}} \]

output
-1/3*arctan((2/3*3^(5/6)+2/9*x*3^(5/6)+1/3*(x^2+3*x+3)^(1/3)*3^(1/2))/(x^2 
+3*x+3)^(1/3))*3^(1/6)+1/9*ln(3*3^(1/3)+3^(1/3)*x-3*(x^2+3*x+3)^(1/3))*3^( 
2/3)-1/18*ln(9*3^(2/3)+6*3^(2/3)*x+3^(2/3)*x^2+(9*3^(1/3)+3*3^(1/3)*x)*(x^ 
2+3*x+3)^(1/3)+9*(x^2+3*x+3)^(2/3))*3^(2/3)
 
3.23.91.2 Mathematica [A] (verified)

Time = 0.20 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.93 \[ \int \frac {1}{x \sqrt [3]{3+3 x+x^2}} \, dx=\frac {-6 \arctan \left (\frac {1}{\sqrt {3}}+\frac {2}{\sqrt [6]{3} \sqrt [3]{3+3 x+x^2}}+\frac {2 x}{3 \sqrt [6]{3} \sqrt [3]{3+3 x+x^2}}\right )+\sqrt {3} \left (2 \log \left (3 \sqrt [3]{3}+\sqrt [3]{3} x-3 \sqrt [3]{3+3 x+x^2}\right )-\log \left (9\ 3^{2/3}+6\ 3^{2/3} x+3^{2/3} x^2+3 \sqrt [3]{3} (3+x) \sqrt [3]{3+3 x+x^2}+9 \left (3+3 x+x^2\right )^{2/3}\right )\right )}{6\ 3^{5/6}} \]

input
Integrate[1/(x*(3 + 3*x + x^2)^(1/3)),x]
 
output
(-6*ArcTan[1/Sqrt[3] + 2/(3^(1/6)*(3 + 3*x + x^2)^(1/3)) + (2*x)/(3*3^(1/6 
)*(3 + 3*x + x^2)^(1/3))] + Sqrt[3]*(2*Log[3*3^(1/3) + 3^(1/3)*x - 3*(3 + 
3*x + x^2)^(1/3)] - Log[9*3^(2/3) + 6*3^(2/3)*x + 3^(2/3)*x^2 + 3*3^(1/3)* 
(3 + x)*(3 + 3*x + x^2)^(1/3) + 9*(3 + 3*x + x^2)^(2/3)]))/(6*3^(5/6))
 
3.23.91.3 Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.47, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {1176}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \sqrt [3]{x^2+3 x+3}} \, dx\)

\(\Big \downarrow \) 1176

\(\displaystyle -\frac {\arctan \left (\frac {2 (x+3)}{3 \sqrt [6]{3} \sqrt [3]{x^2+3 x+3}}+\frac {1}{\sqrt {3}}\right )}{3^{5/6}}+\frac {\log \left (3^{2/3} \sqrt [3]{x^2+3 x+3}-x-3\right )}{2 \sqrt [3]{3}}-\frac {\log (x)}{2 \sqrt [3]{3}}\)

input
Int[1/(x*(3 + 3*x + x^2)^(1/3)),x]
 
output
-(ArcTan[1/Sqrt[3] + (2*(3 + x))/(3*3^(1/6)*(3 + 3*x + x^2)^(1/3))]/3^(5/6 
)) - Log[x]/(2*3^(1/3)) + Log[-3 - x + 3^(2/3)*(3 + 3*x + x^2)^(1/3)]/(2*3 
^(1/3))
 

3.23.91.3.1 Defintions of rubi rules used

rule 1176
Int[1/(((d_.) + (e_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(1/3)), x_Sy 
mbol] :> With[{q = Rt[-3*c*e^2*(2*c*d - b*e), 3]}, Simp[(-Sqrt[3])*c*e*(Arc 
Tan[1/Sqrt[3] - 2*((c*d - b*e - c*e*x)/(Sqrt[3]*q*(a + b*x + c*x^2)^(1/3))) 
]/q^2), x] + (-Simp[3*c*e*(Log[d + e*x]/(2*q^2)), x] + Simp[3*c*e*(Log[c*d 
- b*e - c*e*x + q*(a + b*x + c*x^2)^(1/3)]/(2*q^2)), x])] /; FreeQ[{a, b, c 
, d, e}, x] && EqQ[c^2*d^2 - b*c*d*e + b^2*e^2 - 3*a*c*e^2, 0] && NegQ[c*e^ 
2*(2*c*d - b*e)]
 
3.23.91.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 11.44 (sec) , antiderivative size = 1553, normalized size of antiderivative = 8.87

method result size
trager \(\text {Expression too large to display}\) \(1553\)

input
int(1/x/(x^2+3*x+3)^(1/3),x,method=_RETURNVERBOSE)
 
output
1/3*RootOf(RootOf(_Z^3-9)^2+3*_Z*RootOf(_Z^3-9)+9*_Z^2)*ln((-2430510641554 
5*RootOf(_Z^3-9)^3*RootOf(RootOf(_Z^3-9)^2+3*_Z*RootOf(_Z^3-9)+9*_Z^2)+186 
84300290294655*(x^2+3*x+3)^(2/3)-13926825976107285*RootOf(_Z^3-9)-17283631 
2288320*RootOf(_Z^3-9)*x^3-4642275325369095*RootOf(_Z^3-9)*x^2-13926825976 
107285*RootOf(_Z^3-9)*x-56128018886371134*RootOf(RootOf(_Z^3-9)^2+3*_Z*Roo 
tOf(_Z^3-9)+9*_Z^2)-32651552580786*RootOf(RootOf(_Z^3-9)^2+3*_Z*RootOf(_Z^ 
3-9)+9*_Z^2)^2*RootOf(_Z^3-9)^2*x^2-8101702138515*RootOf(RootOf(_Z^3-9)^2+ 
3*_Z*RootOf(_Z^3-9)+9*_Z^2)*RootOf(_Z^3-9)^3*x^2-97954657742358*RootOf(Roo 
tOf(_Z^3-9)^2+3*_Z*RootOf(_Z^3-9)+9*_Z^2)^2*RootOf(_Z^3-9)^2*x-24305106415 
545*RootOf(RootOf(_Z^3-9)^2+3*_Z*RootOf(_Z^3-9)+9*_Z^2)*RootOf(_Z^3-9)^3*x 
-696566455056768*RootOf(RootOf(_Z^3-9)^2+3*_Z*RootOf(_Z^3-9)+9*_Z^2)*x^3-1 
8709339628790378*RootOf(RootOf(_Z^3-9)^2+3*_Z*RootOf(_Z^3-9)+9*_Z^2)*x^2-5 
6128018886371134*RootOf(RootOf(_Z^3-9)^2+3*_Z*RootOf(_Z^3-9)+9*_Z^2)*x+539 
492107992192*(x^2+3*x+3)^(2/3)*RootOf(RootOf(_Z^3-9)^2+3*_Z*RootOf(_Z^3-9) 
+9*_Z^2)*RootOf(_Z^3-9)^2*x+1536541257596103*RootOf(_Z^3-9)*RootOf(RootOf( 
_Z^3-9)^2+3*_Z*RootOf(_Z^3-9)+9*_Z^2)*(x^2+3*x+3)^(1/3)*x^2+92192475455766 
18*(x^2+3*x+3)^(1/3)*RootOf(RootOf(_Z^3-9)^2+3*_Z*RootOf(_Z^3-9)+9*_Z^2)*R 
ootOf(_Z^3-9)*x+56711914969605*RootOf(RootOf(_Z^3-9)^2+3*_Z*RootOf(_Z^3-9) 
+9*_Z^2)*RootOf(_Z^3-9)^3*x^3+228560868065502*RootOf(RootOf(_Z^3-9)^2+3*_Z 
*RootOf(_Z^3-9)+9*_Z^2)^2*RootOf(_Z^3-9)^2*x^3-97954657742358*RootOf(Ro...
 
3.23.91.5 Fricas [A] (verification not implemented)

Time = 1.12 (sec) , antiderivative size = 156, normalized size of antiderivative = 0.89 \[ \int \frac {1}{x \sqrt [3]{3+3 x+x^2}} \, dx=\frac {1}{9} \cdot 3^{\frac {2}{3}} \log \left (\frac {3^{\frac {1}{3}} {\left (x + 3\right )} - 3 \, {\left (x^{2} + 3 \, x + 3\right )}^{\frac {1}{3}}}{x}\right ) - \frac {1}{18} \cdot 3^{\frac {2}{3}} \log \left (\frac {3^{\frac {1}{3}} {\left (x^{2} + 6 \, x + 9\right )} + 3 \cdot 3^{\frac {2}{3}} {\left (x^{2} + 3 \, x + 3\right )}^{\frac {2}{3}} + 3 \, {\left (x^{2} + 3 \, x + 3\right )}^{\frac {1}{3}} {\left (x + 3\right )}}{x^{2}}\right ) - \frac {1}{3} \cdot 3^{\frac {1}{6}} \arctan \left (\frac {3^{\frac {1}{6}} {\left (3^{\frac {1}{3}} x^{3} + 6 \cdot 3^{\frac {2}{3}} {\left (x^{2} + 3 \, x + 3\right )}^{\frac {2}{3}} {\left (x + 3\right )} - 6 \, {\left (x^{2} + 6 \, x + 9\right )} {\left (x^{2} + 3 \, x + 3\right )}^{\frac {1}{3}}\right )}}{3 \, {\left (x^{3} + 18 \, x^{2} + 54 \, x + 54\right )}}\right ) \]

input
integrate(1/x/(x^2+3*x+3)^(1/3),x, algorithm="fricas")
 
output
1/9*3^(2/3)*log((3^(1/3)*(x + 3) - 3*(x^2 + 3*x + 3)^(1/3))/x) - 1/18*3^(2 
/3)*log((3^(1/3)*(x^2 + 6*x + 9) + 3*3^(2/3)*(x^2 + 3*x + 3)^(2/3) + 3*(x^ 
2 + 3*x + 3)^(1/3)*(x + 3))/x^2) - 1/3*3^(1/6)*arctan(1/3*3^(1/6)*(3^(1/3) 
*x^3 + 6*3^(2/3)*(x^2 + 3*x + 3)^(2/3)*(x + 3) - 6*(x^2 + 6*x + 9)*(x^2 + 
3*x + 3)^(1/3))/(x^3 + 18*x^2 + 54*x + 54))
 
3.23.91.6 Sympy [F]

\[ \int \frac {1}{x \sqrt [3]{3+3 x+x^2}} \, dx=\int \frac {1}{x \sqrt [3]{x^{2} + 3 x + 3}}\, dx \]

input
integrate(1/x/(x**2+3*x+3)**(1/3),x)
 
output
Integral(1/(x*(x**2 + 3*x + 3)**(1/3)), x)
 
3.23.91.7 Maxima [F]

\[ \int \frac {1}{x \sqrt [3]{3+3 x+x^2}} \, dx=\int { \frac {1}{{\left (x^{2} + 3 \, x + 3\right )}^{\frac {1}{3}} x} \,d x } \]

input
integrate(1/x/(x^2+3*x+3)^(1/3),x, algorithm="maxima")
 
output
integrate(1/((x^2 + 3*x + 3)^(1/3)*x), x)
 
3.23.91.8 Giac [F]

\[ \int \frac {1}{x \sqrt [3]{3+3 x+x^2}} \, dx=\int { \frac {1}{{\left (x^{2} + 3 \, x + 3\right )}^{\frac {1}{3}} x} \,d x } \]

input
integrate(1/x/(x^2+3*x+3)^(1/3),x, algorithm="giac")
 
output
integrate(1/((x^2 + 3*x + 3)^(1/3)*x), x)
 
3.23.91.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x \sqrt [3]{3+3 x+x^2}} \, dx=\int \frac {1}{x\,{\left (x^2+3\,x+3\right )}^{1/3}} \,d x \]

input
int(1/(x*(3*x + x^2 + 3)^(1/3)),x)
 
output
int(1/(x*(3*x + x^2 + 3)^(1/3)), x)