3.24.58 \(\int \frac {\sqrt [4]{b x^3+a x^4}}{x^2 (-d+c x^2)} \, dx\) [2358]

3.24.58.1 Optimal result
3.24.58.2 Mathematica [A] (verified)
3.24.58.3 Rubi [B] (verified)
3.24.58.4 Maple [N/A]
3.24.58.5 Fricas [C] (verification not implemented)
3.24.58.6 Sympy [N/A]
3.24.58.7 Maxima [N/A]
3.24.58.8 Giac [C] (verification not implemented)
3.24.58.9 Mupad [N/A]

3.24.58.1 Optimal result

Integrand size = 30, antiderivative size = 187 \[ \int \frac {\sqrt [4]{b x^3+a x^4}}{x^2 \left (-d+c x^2\right )} \, dx=\frac {4 \sqrt [4]{b x^3+a x^4}}{d x}+\frac {\text {RootSum}\left [b^2 c-a^2 d+2 a d \text {$\#$1}^4-d \text {$\#$1}^8\&,\frac {b^2 c \log (x)-a^2 d \log (x)-b^2 c \log \left (\sqrt [4]{b x^3+a x^4}-x \text {$\#$1}\right )+a^2 d \log \left (\sqrt [4]{b x^3+a x^4}-x \text {$\#$1}\right )+a d \log (x) \text {$\#$1}^4-a d \log \left (\sqrt [4]{b x^3+a x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4}{a \text {$\#$1}^3-\text {$\#$1}^7}\&\right ]}{2 d^2} \]

output
Unintegrable
 
3.24.58.2 Mathematica [A] (verified)

Time = 0.40 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.06 \[ \int \frac {\sqrt [4]{b x^3+a x^4}}{x^2 \left (-d+c x^2\right )} \, dx=\frac {32 d x^2 (b+a x)-x^{9/4} (b+a x)^{3/4} \text {RootSum}\left [b^2 c-a^2 d+2 a d \text {$\#$1}^4-d \text {$\#$1}^8\&,\frac {b^2 c \log (x)-a^2 d \log (x)-4 b^2 c \log \left (\sqrt [4]{b+a x}-\sqrt [4]{x} \text {$\#$1}\right )+4 a^2 d \log \left (\sqrt [4]{b+a x}-\sqrt [4]{x} \text {$\#$1}\right )+a d \log (x) \text {$\#$1}^4-4 a d \log \left (\sqrt [4]{b+a x}-\sqrt [4]{x} \text {$\#$1}\right ) \text {$\#$1}^4}{-a \text {$\#$1}^3+\text {$\#$1}^7}\&\right ]}{8 d^2 \left (x^3 (b+a x)\right )^{3/4}} \]

input
Integrate[(b*x^3 + a*x^4)^(1/4)/(x^2*(-d + c*x^2)),x]
 
output
(32*d*x^2*(b + a*x) - x^(9/4)*(b + a*x)^(3/4)*RootSum[b^2*c - a^2*d + 2*a* 
d*#1^4 - d*#1^8 & , (b^2*c*Log[x] - a^2*d*Log[x] - 4*b^2*c*Log[(b + a*x)^( 
1/4) - x^(1/4)*#1] + 4*a^2*d*Log[(b + a*x)^(1/4) - x^(1/4)*#1] + a*d*Log[x 
]*#1^4 - 4*a*d*Log[(b + a*x)^(1/4) - x^(1/4)*#1]*#1^4)/(-(a*#1^3) + #1^7) 
& ])/(8*d^2*(x^3*(b + a*x))^(3/4))
 
3.24.58.3 Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(637\) vs. \(2(187)=374\).

Time = 1.99 (sec) , antiderivative size = 637, normalized size of antiderivative = 3.41, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.233, Rules used = {2467, 25, 611, 48, 2035, 7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [4]{a x^4+b x^3}}{x^2 \left (c x^2-d\right )} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt [4]{a x^4+b x^3} \int -\frac {\sqrt [4]{b+a x}}{x^{5/4} \left (d-c x^2\right )}dx}{x^{3/4} \sqrt [4]{a x+b}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt [4]{a x^4+b x^3} \int \frac {\sqrt [4]{b+a x}}{x^{5/4} \left (d-c x^2\right )}dx}{x^{3/4} \sqrt [4]{a x+b}}\)

\(\Big \downarrow \) 611

\(\displaystyle -\frac {\sqrt [4]{a x^4+b x^3} \left (\frac {\int \frac {a d+b c x}{\sqrt [4]{x} (b+a x)^{3/4} \left (d-c x^2\right )}dx}{d}+\frac {b \int \frac {1}{x^{5/4} (b+a x)^{3/4}}dx}{d}\right )}{x^{3/4} \sqrt [4]{a x+b}}\)

\(\Big \downarrow \) 48

\(\displaystyle -\frac {\sqrt [4]{a x^4+b x^3} \left (\frac {\int \frac {a d+b c x}{\sqrt [4]{x} (b+a x)^{3/4} \left (d-c x^2\right )}dx}{d}-\frac {4 \sqrt [4]{a x+b}}{d \sqrt [4]{x}}\right )}{x^{3/4} \sqrt [4]{a x+b}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {\sqrt [4]{a x^4+b x^3} \left (\frac {4 \int \frac {\sqrt {x} (a d+b c x)}{(b+a x)^{3/4} \left (d-c x^2\right )}d\sqrt [4]{x}}{d}-\frac {4 \sqrt [4]{a x+b}}{d \sqrt [4]{x}}\right )}{x^{3/4} \sqrt [4]{a x+b}}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {\sqrt [4]{a x^4+b x^3} \left (\frac {4 \int \left (\frac {a d \sqrt {x}}{(b+a x)^{3/4} \left (d-c x^2\right )}-\frac {b c x^{3/2}}{(b+a x)^{3/4} \left (c x^2-d\right )}\right )d\sqrt [4]{x}}{d}-\frac {4 \sqrt [4]{a x+b}}{d \sqrt [4]{x}}\right )}{x^{3/4} \sqrt [4]{a x+b}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\sqrt [4]{a x^4+b x^3} \left (\frac {4 \left (-\frac {a d^{3/8} \arctan \left (\frac {\sqrt [4]{x} \sqrt [4]{a \sqrt {d}-b \sqrt {c}}}{\sqrt [8]{d} \sqrt [4]{a x+b}}\right )}{4 \left (a \sqrt {d}-b \sqrt {c}\right )^{3/4}}-\frac {a d^{3/8} \arctan \left (\frac {\sqrt [4]{x} \sqrt [4]{a \sqrt {d}+b \sqrt {c}}}{\sqrt [8]{d} \sqrt [4]{a x+b}}\right )}{4 \left (a \sqrt {d}+b \sqrt {c}\right )^{3/4}}+\frac {b \sqrt {c} \arctan \left (\frac {\sqrt [4]{x} \sqrt [4]{a \sqrt {d}-b \sqrt {c}}}{\sqrt [8]{d} \sqrt [4]{a x+b}}\right )}{4 \sqrt [8]{d} \left (a \sqrt {d}-b \sqrt {c}\right )^{3/4}}-\frac {b \sqrt {c} \arctan \left (\frac {\sqrt [4]{x} \sqrt [4]{a \sqrt {d}+b \sqrt {c}}}{\sqrt [8]{d} \sqrt [4]{a x+b}}\right )}{4 \sqrt [8]{d} \left (a \sqrt {d}+b \sqrt {c}\right )^{3/4}}+\frac {a d^{3/8} \text {arctanh}\left (\frac {\sqrt [4]{x} \sqrt [4]{a \sqrt {d}-b \sqrt {c}}}{\sqrt [8]{d} \sqrt [4]{a x+b}}\right )}{4 \left (a \sqrt {d}-b \sqrt {c}\right )^{3/4}}+\frac {a d^{3/8} \text {arctanh}\left (\frac {\sqrt [4]{x} \sqrt [4]{a \sqrt {d}+b \sqrt {c}}}{\sqrt [8]{d} \sqrt [4]{a x+b}}\right )}{4 \left (a \sqrt {d}+b \sqrt {c}\right )^{3/4}}-\frac {b \sqrt {c} \text {arctanh}\left (\frac {\sqrt [4]{x} \sqrt [4]{a \sqrt {d}-b \sqrt {c}}}{\sqrt [8]{d} \sqrt [4]{a x+b}}\right )}{4 \sqrt [8]{d} \left (a \sqrt {d}-b \sqrt {c}\right )^{3/4}}+\frac {b \sqrt {c} \text {arctanh}\left (\frac {\sqrt [4]{x} \sqrt [4]{a \sqrt {d}+b \sqrt {c}}}{\sqrt [8]{d} \sqrt [4]{a x+b}}\right )}{4 \sqrt [8]{d} \left (a \sqrt {d}+b \sqrt {c}\right )^{3/4}}\right )}{d}-\frac {4 \sqrt [4]{a x+b}}{d \sqrt [4]{x}}\right )}{x^{3/4} \sqrt [4]{a x+b}}\)

input
Int[(b*x^3 + a*x^4)^(1/4)/(x^2*(-d + c*x^2)),x]
 
output
-(((b*x^3 + a*x^4)^(1/4)*((-4*(b + a*x)^(1/4))/(d*x^(1/4)) + (4*((b*Sqrt[c 
]*ArcTan[((-(b*Sqrt[c]) + a*Sqrt[d])^(1/4)*x^(1/4))/(d^(1/8)*(b + a*x)^(1/ 
4))])/(4*(-(b*Sqrt[c]) + a*Sqrt[d])^(3/4)*d^(1/8)) - (a*d^(3/8)*ArcTan[((- 
(b*Sqrt[c]) + a*Sqrt[d])^(1/4)*x^(1/4))/(d^(1/8)*(b + a*x)^(1/4))])/(4*(-( 
b*Sqrt[c]) + a*Sqrt[d])^(3/4)) - (b*Sqrt[c]*ArcTan[((b*Sqrt[c] + a*Sqrt[d] 
)^(1/4)*x^(1/4))/(d^(1/8)*(b + a*x)^(1/4))])/(4*(b*Sqrt[c] + a*Sqrt[d])^(3 
/4)*d^(1/8)) - (a*d^(3/8)*ArcTan[((b*Sqrt[c] + a*Sqrt[d])^(1/4)*x^(1/4))/( 
d^(1/8)*(b + a*x)^(1/4))])/(4*(b*Sqrt[c] + a*Sqrt[d])^(3/4)) - (b*Sqrt[c]* 
ArcTanh[((-(b*Sqrt[c]) + a*Sqrt[d])^(1/4)*x^(1/4))/(d^(1/8)*(b + a*x)^(1/4 
))])/(4*(-(b*Sqrt[c]) + a*Sqrt[d])^(3/4)*d^(1/8)) + (a*d^(3/8)*ArcTanh[((- 
(b*Sqrt[c]) + a*Sqrt[d])^(1/4)*x^(1/4))/(d^(1/8)*(b + a*x)^(1/4))])/(4*(-( 
b*Sqrt[c]) + a*Sqrt[d])^(3/4)) + (b*Sqrt[c]*ArcTanh[((b*Sqrt[c] + a*Sqrt[d 
])^(1/4)*x^(1/4))/(d^(1/8)*(b + a*x)^(1/4))])/(4*(b*Sqrt[c] + a*Sqrt[d])^( 
3/4)*d^(1/8)) + (a*d^(3/8)*ArcTanh[((b*Sqrt[c] + a*Sqrt[d])^(1/4)*x^(1/4)) 
/(d^(1/8)*(b + a*x)^(1/4))])/(4*(b*Sqrt[c] + a*Sqrt[d])^(3/4))))/d))/(x^(3 
/4)*(b + a*x)^(1/4)))
 

3.24.58.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 48
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp 
[(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{ 
a, b, c, d, m, n}, x] && EqQ[m + n + 2, 0] && NeQ[m, -1]
 

rule 611
Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_))/((a_) + (b_.)*(x_)^2), x_S 
ymbol] :> Simp[c/a   Int[(e*x)^m*(c + d*x)^(n - 1), x], x] + Simp[1/(a*e) 
 Int[((e*x)^(m + 1)*(c + d*x)^(n - 1)*(a*d - b*c*x))/(a + b*x^2), x], x] /; 
 FreeQ[{a, b, c, d, e}, x] && GtQ[n, 0] && LtQ[m, -1] &&  !IntegerQ[m] && 
!IntegerQ[n]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.24.58.4 Maple [N/A]

Time = 0.44 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.57

method result size
pseudoelliptic \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (d \,\textit {\_Z}^{8}-2 a d \,\textit {\_Z}^{4}+a^{2} d -b^{2} c \right )}{\sum }\frac {\left (\textit {\_R}^{4} a d -a^{2} d +b^{2} c \right ) \ln \left (\frac {-\textit {\_R} x +\left (x^{3} \left (a x +b \right )\right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R}^{3} \left (\textit {\_R}^{4}-a \right )}\right ) x +8 \left (x^{3} \left (a x +b \right )\right )^{\frac {1}{4}} d}{2 d^{2} x}\) \(106\)

input
int((a*x^4+b*x^3)^(1/4)/x^2/(c*x^2-d),x,method=_RETURNVERBOSE)
 
output
1/2*(sum((_R^4*a*d-a^2*d+b^2*c)*ln((-_R*x+(x^3*(a*x+b))^(1/4))/x)/_R^3/(_R 
^4-a),_R=RootOf(_Z^8*d-2*_Z^4*a*d+a^2*d-b^2*c))*x+8*(x^3*(a*x+b))^(1/4)*d) 
/d^2/x
 
3.24.58.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.28 (sec) , antiderivative size = 648, normalized size of antiderivative = 3.47 \[ \int \frac {\sqrt [4]{b x^3+a x^4}}{x^2 \left (-d+c x^2\right )} \, dx=-\frac {d x \sqrt {-\sqrt {\frac {d^{4} \sqrt {\frac {b^{2} c}{d^{9}}} + a}{d^{4}}}} \log \left (\frac {d x \sqrt {-\sqrt {\frac {d^{4} \sqrt {\frac {b^{2} c}{d^{9}}} + a}{d^{4}}}} + {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - d x \sqrt {-\sqrt {\frac {d^{4} \sqrt {\frac {b^{2} c}{d^{9}}} + a}{d^{4}}}} \log \left (-\frac {d x \sqrt {-\sqrt {\frac {d^{4} \sqrt {\frac {b^{2} c}{d^{9}}} + a}{d^{4}}}} - {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + d x \sqrt {-\sqrt {-\frac {d^{4} \sqrt {\frac {b^{2} c}{d^{9}}} - a}{d^{4}}}} \log \left (\frac {d x \sqrt {-\sqrt {-\frac {d^{4} \sqrt {\frac {b^{2} c}{d^{9}}} - a}{d^{4}}}} + {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - d x \sqrt {-\sqrt {-\frac {d^{4} \sqrt {\frac {b^{2} c}{d^{9}}} - a}{d^{4}}}} \log \left (-\frac {d x \sqrt {-\sqrt {-\frac {d^{4} \sqrt {\frac {b^{2} c}{d^{9}}} - a}{d^{4}}}} - {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + d x \left (\frac {d^{4} \sqrt {\frac {b^{2} c}{d^{9}}} + a}{d^{4}}\right )^{\frac {1}{4}} \log \left (\frac {d x \left (\frac {d^{4} \sqrt {\frac {b^{2} c}{d^{9}}} + a}{d^{4}}\right )^{\frac {1}{4}} + {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - d x \left (\frac {d^{4} \sqrt {\frac {b^{2} c}{d^{9}}} + a}{d^{4}}\right )^{\frac {1}{4}} \log \left (-\frac {d x \left (\frac {d^{4} \sqrt {\frac {b^{2} c}{d^{9}}} + a}{d^{4}}\right )^{\frac {1}{4}} - {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + d x \left (-\frac {d^{4} \sqrt {\frac {b^{2} c}{d^{9}}} - a}{d^{4}}\right )^{\frac {1}{4}} \log \left (\frac {d x \left (-\frac {d^{4} \sqrt {\frac {b^{2} c}{d^{9}}} - a}{d^{4}}\right )^{\frac {1}{4}} + {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - d x \left (-\frac {d^{4} \sqrt {\frac {b^{2} c}{d^{9}}} - a}{d^{4}}\right )^{\frac {1}{4}} \log \left (-\frac {d x \left (-\frac {d^{4} \sqrt {\frac {b^{2} c}{d^{9}}} - a}{d^{4}}\right )^{\frac {1}{4}} - {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - 8 \, {\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}}{2 \, d x} \]

input
integrate((a*x^4+b*x^3)^(1/4)/x^2/(c*x^2-d),x, algorithm="fricas")
 
output
-1/2*(d*x*sqrt(-sqrt((d^4*sqrt(b^2*c/d^9) + a)/d^4))*log((d*x*sqrt(-sqrt(( 
d^4*sqrt(b^2*c/d^9) + a)/d^4)) + (a*x^4 + b*x^3)^(1/4))/x) - d*x*sqrt(-sqr 
t((d^4*sqrt(b^2*c/d^9) + a)/d^4))*log(-(d*x*sqrt(-sqrt((d^4*sqrt(b^2*c/d^9 
) + a)/d^4)) - (a*x^4 + b*x^3)^(1/4))/x) + d*x*sqrt(-sqrt(-(d^4*sqrt(b^2*c 
/d^9) - a)/d^4))*log((d*x*sqrt(-sqrt(-(d^4*sqrt(b^2*c/d^9) - a)/d^4)) + (a 
*x^4 + b*x^3)^(1/4))/x) - d*x*sqrt(-sqrt(-(d^4*sqrt(b^2*c/d^9) - a)/d^4))* 
log(-(d*x*sqrt(-sqrt(-(d^4*sqrt(b^2*c/d^9) - a)/d^4)) - (a*x^4 + b*x^3)^(1 
/4))/x) + d*x*((d^4*sqrt(b^2*c/d^9) + a)/d^4)^(1/4)*log((d*x*((d^4*sqrt(b^ 
2*c/d^9) + a)/d^4)^(1/4) + (a*x^4 + b*x^3)^(1/4))/x) - d*x*((d^4*sqrt(b^2* 
c/d^9) + a)/d^4)^(1/4)*log(-(d*x*((d^4*sqrt(b^2*c/d^9) + a)/d^4)^(1/4) - ( 
a*x^4 + b*x^3)^(1/4))/x) + d*x*(-(d^4*sqrt(b^2*c/d^9) - a)/d^4)^(1/4)*log( 
(d*x*(-(d^4*sqrt(b^2*c/d^9) - a)/d^4)^(1/4) + (a*x^4 + b*x^3)^(1/4))/x) - 
d*x*(-(d^4*sqrt(b^2*c/d^9) - a)/d^4)^(1/4)*log(-(d*x*(-(d^4*sqrt(b^2*c/d^9 
) - a)/d^4)^(1/4) - (a*x^4 + b*x^3)^(1/4))/x) - 8*(a*x^4 + b*x^3)^(1/4))/( 
d*x)
 
3.24.58.6 Sympy [N/A]

Not integrable

Time = 1.81 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.12 \[ \int \frac {\sqrt [4]{b x^3+a x^4}}{x^2 \left (-d+c x^2\right )} \, dx=\int \frac {\sqrt [4]{x^{3} \left (a x + b\right )}}{x^{2} \left (c x^{2} - d\right )}\, dx \]

input
integrate((a*x**4+b*x**3)**(1/4)/x**2/(c*x**2-d),x)
 
output
Integral((x**3*(a*x + b))**(1/4)/(x**2*(c*x**2 - d)), x)
 
3.24.58.7 Maxima [N/A]

Not integrable

Time = 0.22 (sec) , antiderivative size = 30, normalized size of antiderivative = 0.16 \[ \int \frac {\sqrt [4]{b x^3+a x^4}}{x^2 \left (-d+c x^2\right )} \, dx=\int { \frac {{\left (a x^{4} + b x^{3}\right )}^{\frac {1}{4}}}{{\left (c x^{2} - d\right )} x^{2}} \,d x } \]

input
integrate((a*x^4+b*x^3)^(1/4)/x^2/(c*x^2-d),x, algorithm="maxima")
 
output
integrate((a*x^4 + b*x^3)^(1/4)/((c*x^2 - d)*x^2), x)
 
3.24.58.8 Giac [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 118.85 (sec) , antiderivative size = 329, normalized size of antiderivative = 1.76 \[ \int \frac {\sqrt [4]{b x^3+a x^4}}{x^2 \left (-d+c x^2\right )} \, dx=-\frac {2 \, \left (\frac {a d + \sqrt {c d} b}{d}\right )^{\frac {1}{4}} \arctan \left (\frac {{\left (a + \frac {b}{x}\right )}^{\frac {1}{4}} d}{{\left (a d^{4} + \sqrt {c d} b d^{3}\right )}^{\frac {1}{4}}}\right ) + 2 \, \left (\frac {a d - \sqrt {c d} b}{d}\right )^{\frac {1}{4}} \arctan \left (\frac {{\left (a + \frac {b}{x}\right )}^{\frac {1}{4}} d}{{\left (a d^{4} - \sqrt {c d} b d^{3}\right )}^{\frac {1}{4}}}\right ) + \left (\frac {a d + \sqrt {c d} b}{d}\right )^{\frac {1}{4}} \log \left ({\left | {\left (a + \frac {b}{x}\right )}^{\frac {1}{4}} d + {\left (a d^{4} + \sqrt {c d} b d^{3}\right )}^{\frac {1}{4}} \right |}\right ) + \left (\frac {a d - \sqrt {c d} b}{d}\right )^{\frac {1}{4}} \log \left ({\left | {\left (a + \frac {b}{x}\right )}^{\frac {1}{4}} d + {\left (a d^{4} - \sqrt {c d} b d^{3}\right )}^{\frac {1}{4}} \right |}\right ) - \left (\frac {a d + \sqrt {c d} b}{d}\right )^{\frac {1}{4}} \log \left ({\left | -{\left (a + \frac {b}{x}\right )}^{\frac {1}{4}} d + {\left (a d^{4} + \sqrt {c d} b d^{3}\right )}^{\frac {1}{4}} \right |}\right ) - \left (\frac {a d - \sqrt {c d} b}{d}\right )^{\frac {1}{4}} \log \left ({\left | -{\left (a + \frac {b}{x}\right )}^{\frac {1}{4}} d + {\left (a d^{4} - \sqrt {c d} b d^{3}\right )}^{\frac {1}{4}} \right |}\right )}{2 \, d} + \frac {4 \, {\left (a + \frac {b}{x}\right )}^{\frac {1}{4}}}{d} \]

input
integrate((a*x^4+b*x^3)^(1/4)/x^2/(c*x^2-d),x, algorithm="giac")
 
output
-1/2*(2*((a*d + sqrt(c*d)*b)/d)^(1/4)*arctan((a + b/x)^(1/4)*d/(a*d^4 + sq 
rt(c*d)*b*d^3)^(1/4)) + 2*((a*d - sqrt(c*d)*b)/d)^(1/4)*arctan((a + b/x)^( 
1/4)*d/(a*d^4 - sqrt(c*d)*b*d^3)^(1/4)) + ((a*d + sqrt(c*d)*b)/d)^(1/4)*lo 
g(abs((a + b/x)^(1/4)*d + (a*d^4 + sqrt(c*d)*b*d^3)^(1/4))) + ((a*d - sqrt 
(c*d)*b)/d)^(1/4)*log(abs((a + b/x)^(1/4)*d + (a*d^4 - sqrt(c*d)*b*d^3)^(1 
/4))) - ((a*d + sqrt(c*d)*b)/d)^(1/4)*log(abs(-(a + b/x)^(1/4)*d + (a*d^4 
+ sqrt(c*d)*b*d^3)^(1/4))) - ((a*d - sqrt(c*d)*b)/d)^(1/4)*log(abs(-(a + b 
/x)^(1/4)*d + (a*d^4 - sqrt(c*d)*b*d^3)^(1/4))))/d + 4*(a + b/x)^(1/4)/d
 
3.24.58.9 Mupad [N/A]

Not integrable

Time = 6.39 (sec) , antiderivative size = 31, normalized size of antiderivative = 0.17 \[ \int \frac {\sqrt [4]{b x^3+a x^4}}{x^2 \left (-d+c x^2\right )} \, dx=-\int \frac {{\left (a\,x^4+b\,x^3\right )}^{1/4}}{x^2\,\left (d-c\,x^2\right )} \,d x \]

input
int(-(a*x^4 + b*x^3)^(1/4)/(x^2*(d - c*x^2)),x)
 
output
-int((a*x^4 + b*x^3)^(1/4)/(x^2*(d - c*x^2)), x)