3.24.74 \(\int \frac {(-1+x^4)^2}{(1+x^4)^2 \sqrt {x^2+\sqrt {1+x^4}}} \, dx\) [2374]

3.24.74.1 Optimal result
3.24.74.2 Mathematica [A] (verified)
3.24.74.3 Rubi [F]
3.24.74.4 Maple [F]
3.24.74.5 Fricas [A] (verification not implemented)
3.24.74.6 Sympy [F]
3.24.74.7 Maxima [F]
3.24.74.8 Giac [F]
3.24.74.9 Mupad [F(-1)]

3.24.74.1 Optimal result

Integrand size = 32, antiderivative size = 189 \[ \int \frac {\left (-1+x^4\right )^2}{\left (1+x^4\right )^2 \sqrt {x^2+\sqrt {1+x^4}}} \, dx=\frac {x^2 \sqrt {1+x^4} \left (9 x^2+6 x^6\right )+x^2 \left (4+12 x^4+6 x^8\right )}{2 x \sqrt {1+x^4} \left (2 x^2+2 x^6\right ) \sqrt {x^2+\sqrt {1+x^4}}+2 x \left (1+3 x^4+2 x^8\right ) \sqrt {x^2+\sqrt {1+x^4}}}-\frac {3}{2} \text {arctanh}\left (\frac {x}{\sqrt {x^2+\sqrt {1+x^4}}}\right )+\frac {\text {arctanh}\left (\frac {\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2+\sqrt {1+x^4}}\right )}{\sqrt {2}} \]

output
(x^2*(x^4+1)^(1/2)*(6*x^6+9*x^2)+x^2*(6*x^8+12*x^4+4))/(2*x*(x^4+1)^(1/2)* 
(2*x^6+2*x^2)*(x^2+(x^4+1)^(1/2))^(1/2)+2*x*(2*x^8+3*x^4+1)*(x^2+(x^4+1)^( 
1/2))^(1/2))-3/2*arctanh(x/(x^2+(x^4+1)^(1/2))^(1/2))+1/2*arctanh(2^(1/2)* 
x*(x^2+(x^4+1)^(1/2))^(1/2)/(1+x^2+(x^4+1)^(1/2)))*2^(1/2)
 
3.24.74.2 Mathematica [A] (verified)

Time = 0.52 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.86 \[ \int \frac {\left (-1+x^4\right )^2}{\left (1+x^4\right )^2 \sqrt {x^2+\sqrt {1+x^4}}} \, dx=\frac {1}{2} \left (\frac {x \left (4+12 x^4+6 x^8+9 x^2 \sqrt {1+x^4}+6 x^6 \sqrt {1+x^4}\right )}{\left (1+x^4\right ) \sqrt {x^2+\sqrt {1+x^4}} \left (1+2 x^4+2 x^2 \sqrt {1+x^4}\right )}-3 \text {arctanh}\left (\frac {x}{\sqrt {x^2+\sqrt {1+x^4}}}\right )+\sqrt {2} \text {arctanh}\left (\frac {-1+x^2+\sqrt {1+x^4}}{\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}}\right )\right ) \]

input
Integrate[(-1 + x^4)^2/((1 + x^4)^2*Sqrt[x^2 + Sqrt[1 + x^4]]),x]
 
output
((x*(4 + 12*x^4 + 6*x^8 + 9*x^2*Sqrt[1 + x^4] + 6*x^6*Sqrt[1 + x^4]))/((1 
+ x^4)*Sqrt[x^2 + Sqrt[1 + x^4]]*(1 + 2*x^4 + 2*x^2*Sqrt[1 + x^4])) - 3*Ar 
cTanh[x/Sqrt[x^2 + Sqrt[1 + x^4]]] + Sqrt[2]*ArcTanh[(-1 + x^2 + Sqrt[1 + 
x^4])/(Sqrt[2]*x*Sqrt[x^2 + Sqrt[1 + x^4]])])/2
 
3.24.74.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^4-1\right )^2}{\left (x^4+1\right )^2 \sqrt {\sqrt {x^4+1}+x^2}} \, dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (-\frac {4}{\left (x^4+1\right ) \sqrt {\sqrt {x^4+1}+x^2}}+\frac {4}{\left (x^4+1\right )^2 \sqrt {\sqrt {x^4+1}+x^2}}+\frac {1}{\sqrt {\sqrt {x^4+1}+x^2}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \int \frac {1}{\sqrt {x^2+\sqrt {x^4+1}}}dx+\frac {1}{4} i \int \frac {1}{\left (\sqrt [4]{-1}-x\right )^2 \sqrt {x^2+\sqrt {x^4+1}}}dx+\frac {3}{4} \sqrt [4]{-1} \int \frac {1}{\left (\sqrt [4]{-1}-x\right ) \sqrt {x^2+\sqrt {x^4+1}}}dx-\frac {1}{4} i \int \frac {1}{\left (-x-(-1)^{3/4}\right )^2 \sqrt {x^2+\sqrt {x^4+1}}}dx-\frac {3}{4} (-1)^{3/4} \int \frac {1}{\left (-x-(-1)^{3/4}\right ) \sqrt {x^2+\sqrt {x^4+1}}}dx+\frac {1}{4} i \int \frac {1}{\left (x+\sqrt [4]{-1}\right )^2 \sqrt {x^2+\sqrt {x^4+1}}}dx+\frac {3}{4} \sqrt [4]{-1} \int \frac {1}{\left (x+\sqrt [4]{-1}\right ) \sqrt {x^2+\sqrt {x^4+1}}}dx-\frac {1}{4} i \int \frac {1}{\left (x-(-1)^{3/4}\right )^2 \sqrt {x^2+\sqrt {x^4+1}}}dx-\frac {3}{4} (-1)^{3/4} \int \frac {1}{\left (x-(-1)^{3/4}\right ) \sqrt {x^2+\sqrt {x^4+1}}}dx-4 \text {arctanh}\left (\frac {x}{\sqrt {\sqrt {x^4+1}+x^2}}\right )\)

input
Int[(-1 + x^4)^2/((1 + x^4)^2*Sqrt[x^2 + Sqrt[1 + x^4]]),x]
 
output
$Aborted
 

3.24.74.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.24.74.4 Maple [F]

\[\int \frac {\left (x^{4}-1\right )^{2}}{\left (x^{4}+1\right )^{2} \sqrt {x^{2}+\sqrt {x^{4}+1}}}d x\]

input
int((x^4-1)^2/(x^4+1)^2/(x^2+(x^4+1)^(1/2))^(1/2),x)
 
output
int((x^4-1)^2/(x^4+1)^2/(x^2+(x^4+1)^(1/2))^(1/2),x)
 
3.24.74.5 Fricas [A] (verification not implemented)

Time = 0.62 (sec) , antiderivative size = 180, normalized size of antiderivative = 0.95 \[ \int \frac {\left (-1+x^4\right )^2}{\left (1+x^4\right )^2 \sqrt {x^2+\sqrt {1+x^4}}} \, dx=\frac {\sqrt {2} {\left (x^{4} + 1\right )} \log \left (4 \, x^{4} + 4 \, \sqrt {x^{4} + 1} x^{2} + 2 \, {\left (\sqrt {2} x^{3} + \sqrt {2} \sqrt {x^{4} + 1} x\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} + 1\right ) + 3 \, {\left (x^{4} + 1\right )} \log \left (-\frac {9 \, x^{4} + 8 \, \sqrt {x^{4} + 1} x^{2} - 4 \, {\left (2 \, x^{3} + \sqrt {x^{4} + 1} x\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} + 1}{x^{4} + 1}\right ) - 4 \, {\left (x^{7} + 3 \, x^{3} - {\left (x^{5} + 4 \, x\right )} \sqrt {x^{4} + 1}\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}}}{8 \, {\left (x^{4} + 1\right )}} \]

input
integrate((x^4-1)^2/(x^4+1)^2/(x^2+(x^4+1)^(1/2))^(1/2),x, algorithm="fric 
as")
 
output
1/8*(sqrt(2)*(x^4 + 1)*log(4*x^4 + 4*sqrt(x^4 + 1)*x^2 + 2*(sqrt(2)*x^3 + 
sqrt(2)*sqrt(x^4 + 1)*x)*sqrt(x^2 + sqrt(x^4 + 1)) + 1) + 3*(x^4 + 1)*log( 
-(9*x^4 + 8*sqrt(x^4 + 1)*x^2 - 4*(2*x^3 + sqrt(x^4 + 1)*x)*sqrt(x^2 + sqr 
t(x^4 + 1)) + 1)/(x^4 + 1)) - 4*(x^7 + 3*x^3 - (x^5 + 4*x)*sqrt(x^4 + 1))* 
sqrt(x^2 + sqrt(x^4 + 1)))/(x^4 + 1)
 
3.24.74.6 Sympy [F]

\[ \int \frac {\left (-1+x^4\right )^2}{\left (1+x^4\right )^2 \sqrt {x^2+\sqrt {1+x^4}}} \, dx=\int \frac {\left (x - 1\right )^{2} \left (x + 1\right )^{2} \left (x^{2} + 1\right )^{2}}{\sqrt {x^{2} + \sqrt {x^{4} + 1}} \left (x^{4} + 1\right )^{2}}\, dx \]

input
integrate((x**4-1)**2/(x**4+1)**2/(x**2+(x**4+1)**(1/2))**(1/2),x)
 
output
Integral((x - 1)**2*(x + 1)**2*(x**2 + 1)**2/(sqrt(x**2 + sqrt(x**4 + 1))* 
(x**4 + 1)**2), x)
 
3.24.74.7 Maxima [F]

\[ \int \frac {\left (-1+x^4\right )^2}{\left (1+x^4\right )^2 \sqrt {x^2+\sqrt {1+x^4}}} \, dx=\int { \frac {{\left (x^{4} - 1\right )}^{2}}{{\left (x^{4} + 1\right )}^{2} \sqrt {x^{2} + \sqrt {x^{4} + 1}}} \,d x } \]

input
integrate((x^4-1)^2/(x^4+1)^2/(x^2+(x^4+1)^(1/2))^(1/2),x, algorithm="maxi 
ma")
 
output
integrate((x^4 - 1)^2/((x^4 + 1)^2*sqrt(x^2 + sqrt(x^4 + 1))), x)
 
3.24.74.8 Giac [F]

\[ \int \frac {\left (-1+x^4\right )^2}{\left (1+x^4\right )^2 \sqrt {x^2+\sqrt {1+x^4}}} \, dx=\int { \frac {{\left (x^{4} - 1\right )}^{2}}{{\left (x^{4} + 1\right )}^{2} \sqrt {x^{2} + \sqrt {x^{4} + 1}}} \,d x } \]

input
integrate((x^4-1)^2/(x^4+1)^2/(x^2+(x^4+1)^(1/2))^(1/2),x, algorithm="giac 
")
 
output
integrate((x^4 - 1)^2/((x^4 + 1)^2*sqrt(x^2 + sqrt(x^4 + 1))), x)
 
3.24.74.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (-1+x^4\right )^2}{\left (1+x^4\right )^2 \sqrt {x^2+\sqrt {1+x^4}}} \, dx=\int \frac {{\left (x^4-1\right )}^2}{{\left (x^4+1\right )}^2\,\sqrt {\sqrt {x^4+1}+x^2}} \,d x \]

input
int((x^4 - 1)^2/((x^4 + 1)^2*((x^4 + 1)^(1/2) + x^2)^(1/2)),x)
 
output
int((x^4 - 1)^2/((x^4 + 1)^2*((x^4 + 1)^(1/2) + x^2)^(1/2)), x)