3.24.77 \(\int \frac {1}{x \sqrt {a x+\sqrt {-b+a^2 x^2}} \sqrt {c+\sqrt {a x+\sqrt {-b+a^2 x^2}}}} \, dx\) [2377]

3.24.77.1 Optimal result
3.24.77.2 Mathematica [A] (verified)
3.24.77.3 Rubi [F]
3.24.77.4 Maple [N/A] (verified)
3.24.77.5 Fricas [C] (verification not implemented)
3.24.77.6 Sympy [N/A]
3.24.77.7 Maxima [N/A]
3.24.77.8 Giac [F(-2)]
3.24.77.9 Mupad [N/A]

3.24.77.1 Optimal result

Integrand size = 56, antiderivative size = 189 \[ \int \frac {1}{x \sqrt {a x+\sqrt {-b+a^2 x^2}} \sqrt {c+\sqrt {a x+\sqrt {-b+a^2 x^2}}}} \, dx=\frac {2 \sqrt {c+\sqrt {a x+\sqrt {-b+a^2 x^2}}}}{c \sqrt {a x+\sqrt {-b+a^2 x^2}}}-\frac {2 \text {arctanh}\left (\frac {\sqrt {c+\sqrt {a x+\sqrt {-b+a^2 x^2}}}}{\sqrt {c}}\right )}{c^{3/2}}-\text {RootSum}\left [b+c^4-4 c^3 \text {$\#$1}^2+6 c^2 \text {$\#$1}^4-4 c \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {\log \left (\sqrt {c+\sqrt {a x+\sqrt {-b+a^2 x^2}}}-\text {$\#$1}\right )}{c \text {$\#$1}-\text {$\#$1}^3}\&\right ] \]

output
Unintegrable
 
3.24.77.2 Mathematica [A] (verified)

Time = 0.38 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.00 \[ \int \frac {1}{x \sqrt {a x+\sqrt {-b+a^2 x^2}} \sqrt {c+\sqrt {a x+\sqrt {-b+a^2 x^2}}}} \, dx=\frac {2 \sqrt {c+\sqrt {a x+\sqrt {-b+a^2 x^2}}}}{c \sqrt {a x+\sqrt {-b+a^2 x^2}}}-\frac {2 \text {arctanh}\left (\frac {\sqrt {c+\sqrt {a x+\sqrt {-b+a^2 x^2}}}}{\sqrt {c}}\right )}{c^{3/2}}-\text {RootSum}\left [b+c^4-4 c^3 \text {$\#$1}^2+6 c^2 \text {$\#$1}^4-4 c \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {\log \left (\sqrt {c+\sqrt {a x+\sqrt {-b+a^2 x^2}}}-\text {$\#$1}\right )}{c \text {$\#$1}-\text {$\#$1}^3}\&\right ] \]

input
Integrate[1/(x*Sqrt[a*x + Sqrt[-b + a^2*x^2]]*Sqrt[c + Sqrt[a*x + Sqrt[-b 
+ a^2*x^2]]]),x]
 
output
(2*Sqrt[c + Sqrt[a*x + Sqrt[-b + a^2*x^2]]])/(c*Sqrt[a*x + Sqrt[-b + a^2*x 
^2]]) - (2*ArcTanh[Sqrt[c + Sqrt[a*x + Sqrt[-b + a^2*x^2]]]/Sqrt[c]])/c^(3 
/2) - RootSum[b + c^4 - 4*c^3*#1^2 + 6*c^2*#1^4 - 4*c*#1^6 + #1^8 & , Log[ 
Sqrt[c + Sqrt[a*x + Sqrt[-b + a^2*x^2]]] - #1]/(c*#1 - #1^3) & ]
 
3.24.77.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \sqrt {\sqrt {a^2 x^2-b}+a x} \sqrt {\sqrt {\sqrt {a^2 x^2-b}+a x}+c}} \, dx\)

\(\Big \downarrow \) 7299

\(\displaystyle \int \frac {1}{x \sqrt {\sqrt {a^2 x^2-b}+a x} \sqrt {\sqrt {\sqrt {a^2 x^2-b}+a x}+c}}dx\)

input
Int[1/(x*Sqrt[a*x + Sqrt[-b + a^2*x^2]]*Sqrt[c + Sqrt[a*x + Sqrt[-b + a^2* 
x^2]]]),x]
 
output
$Aborted
 

3.24.77.3.1 Defintions of rubi rules used

rule 7299
Int[u_, x_] :> CannotIntegrate[u, x]
 
3.24.77.4 Maple [N/A] (verified)

Not integrable

Time = 0.02 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.24

\[\int \frac {1}{x \sqrt {a x +\sqrt {a^{2} x^{2}-b}}\, \sqrt {c +\sqrt {a x +\sqrt {a^{2} x^{2}-b}}}}d x\]

input
int(1/x/(a*x+(a^2*x^2-b)^(1/2))^(1/2)/(c+(a*x+(a^2*x^2-b)^(1/2))^(1/2))^(1 
/2),x)
 
output
int(1/x/(a*x+(a^2*x^2-b)^(1/2))^(1/2)/(c+(a*x+(a^2*x^2-b)^(1/2))^(1/2))^(1 
/2),x)
 
3.24.77.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 3.16 (sec) , antiderivative size = 1411098, normalized size of antiderivative = 7466.13 \[ \int \frac {1}{x \sqrt {a x+\sqrt {-b+a^2 x^2}} \sqrt {c+\sqrt {a x+\sqrt {-b+a^2 x^2}}}} \, dx=\text {Too large to display} \]

input
integrate(1/x/(a*x+(a^2*x^2-b)^(1/2))^(1/2)/(c+(a*x+(a^2*x^2-b)^(1/2))^(1/ 
2))^(1/2),x, algorithm="fricas")
 
output
Too large to include
 
3.24.77.6 Sympy [N/A]

Not integrable

Time = 0.97 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.24 \[ \int \frac {1}{x \sqrt {a x+\sqrt {-b+a^2 x^2}} \sqrt {c+\sqrt {a x+\sqrt {-b+a^2 x^2}}}} \, dx=\int \frac {1}{x \sqrt {c + \sqrt {a x + \sqrt {a^{2} x^{2} - b}}} \sqrt {a x + \sqrt {a^{2} x^{2} - b}}}\, dx \]

input
integrate(1/x/(a*x+(a**2*x**2-b)**(1/2))**(1/2)/(c+(a*x+(a**2*x**2-b)**(1/ 
2))**(1/2))**(1/2),x)
 
output
Integral(1/(x*sqrt(c + sqrt(a*x + sqrt(a**2*x**2 - b)))*sqrt(a*x + sqrt(a* 
*2*x**2 - b))), x)
 
3.24.77.7 Maxima [N/A]

Not integrable

Time = 1.28 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.25 \[ \int \frac {1}{x \sqrt {a x+\sqrt {-b+a^2 x^2}} \sqrt {c+\sqrt {a x+\sqrt {-b+a^2 x^2}}}} \, dx=\int { \frac {1}{\sqrt {a x + \sqrt {a^{2} x^{2} - b}} \sqrt {c + \sqrt {a x + \sqrt {a^{2} x^{2} - b}}} x} \,d x } \]

input
integrate(1/x/(a*x+(a^2*x^2-b)^(1/2))^(1/2)/(c+(a*x+(a^2*x^2-b)^(1/2))^(1/ 
2))^(1/2),x, algorithm="maxima")
 
output
integrate(1/(sqrt(a*x + sqrt(a^2*x^2 - b))*sqrt(c + sqrt(a*x + sqrt(a^2*x^ 
2 - b)))*x), x)
 
3.24.77.8 Giac [F(-2)]

Exception generated. \[ \int \frac {1}{x \sqrt {a x+\sqrt {-b+a^2 x^2}} \sqrt {c+\sqrt {a x+\sqrt {-b+a^2 x^2}}}} \, dx=\text {Exception raised: TypeError} \]

input
integrate(1/x/(a*x+(a^2*x^2-b)^(1/2))^(1/2)/(c+(a*x+(a^2*x^2-b)^(1/2))^(1/ 
2))^(1/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(con 
st gen &
 
3.24.77.9 Mupad [N/A]

Not integrable

Time = 6.36 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.25 \[ \int \frac {1}{x \sqrt {a x+\sqrt {-b+a^2 x^2}} \sqrt {c+\sqrt {a x+\sqrt {-b+a^2 x^2}}}} \, dx=\int \frac {1}{x\,\sqrt {a\,x+\sqrt {a^2\,x^2-b}}\,\sqrt {c+\sqrt {a\,x+\sqrt {a^2\,x^2-b}}}} \,d x \]

input
int(1/(x*(a*x + (a^2*x^2 - b)^(1/2))^(1/2)*(c + (a*x + (a^2*x^2 - b)^(1/2) 
)^(1/2))^(1/2)),x)
 
output
int(1/(x*(a*x + (a^2*x^2 - b)^(1/2))^(1/2)*(c + (a*x + (a^2*x^2 - b)^(1/2) 
)^(1/2))^(1/2)), x)