3.24.94 \(\int \frac {x \sqrt {1+x}}{x+\sqrt {x+\sqrt {1+x}}} \, dx\) [2394]

3.24.94.1 Optimal result
3.24.94.2 Mathematica [A] (verified)
3.24.94.3 Rubi [F]
3.24.94.4 Maple [N/A] (verified)
3.24.94.5 Fricas [F(-1)]
3.24.94.6 Sympy [N/A]
3.24.94.7 Maxima [N/A]
3.24.94.8 Giac [N/A]
3.24.94.9 Mupad [N/A]

3.24.94.1 Optimal result

Integrand size = 26, antiderivative size = 192 \[ \int \frac {x \sqrt {1+x}}{x+\sqrt {x+\sqrt {1+x}}} \, dx=-\frac {1}{2} \sqrt {x+\sqrt {1+x}}+\sqrt {1+x} \left (\frac {2 (4+x)}{3}-\sqrt {x+\sqrt {1+x}}\right )+\frac {3}{4} \log \left (1+2 \sqrt {1+x}-2 \sqrt {x+\sqrt {1+x}}\right )+4 \text {RootSum}\left [1+3 \text {$\#$1}-5 \text {$\#$1}^2+2 \text {$\#$1}^3+\text {$\#$1}^4\&,\frac {-3 \log \left (\sqrt {1+x}-\sqrt {x+\sqrt {1+x}}+\text {$\#$1}\right ) \text {$\#$1}^2+\log \left (\sqrt {1+x}-\sqrt {x+\sqrt {1+x}}+\text {$\#$1}\right ) \text {$\#$1}^3}{3-10 \text {$\#$1}+6 \text {$\#$1}^2+4 \text {$\#$1}^3}\&\right ] \]

output
Unintegrable
 
3.24.94.2 Mathematica [A] (verified)

Time = 0.39 (sec) , antiderivative size = 190, normalized size of antiderivative = 0.99 \[ \int \frac {x \sqrt {1+x}}{x+\sqrt {x+\sqrt {1+x}}} \, dx=\frac {2}{3} \sqrt {1+x} (4+x)+\frac {1}{2} \left (-1-2 \sqrt {1+x}\right ) \sqrt {x+\sqrt {1+x}}+\frac {3}{4} \log \left (-1-2 \sqrt {1+x}+2 \sqrt {x+\sqrt {1+x}}\right )+4 \text {RootSum}\left [1+3 \text {$\#$1}-5 \text {$\#$1}^2+2 \text {$\#$1}^3+\text {$\#$1}^4\&,\frac {-3 \log \left (-\sqrt {1+x}+\sqrt {x+\sqrt {1+x}}-\text {$\#$1}\right ) \text {$\#$1}^2+\log \left (-\sqrt {1+x}+\sqrt {x+\sqrt {1+x}}-\text {$\#$1}\right ) \text {$\#$1}^3}{3-10 \text {$\#$1}+6 \text {$\#$1}^2+4 \text {$\#$1}^3}\&\right ] \]

input
Integrate[(x*Sqrt[1 + x])/(x + Sqrt[x + Sqrt[1 + x]]),x]
 
output
(2*Sqrt[1 + x]*(4 + x))/3 + ((-1 - 2*Sqrt[1 + x])*Sqrt[x + Sqrt[1 + x]])/2 
 + (3*Log[-1 - 2*Sqrt[1 + x] + 2*Sqrt[x + Sqrt[1 + x]]])/4 + 4*RootSum[1 + 
 3*#1 - 5*#1^2 + 2*#1^3 + #1^4 & , (-3*Log[-Sqrt[1 + x] + Sqrt[x + Sqrt[1 
+ x]] - #1]*#1^2 + Log[-Sqrt[1 + x] + Sqrt[x + Sqrt[1 + x]] - #1]*#1^3)/(3 
 - 10*#1 + 6*#1^2 + 4*#1^3) & ]
 
3.24.94.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x \sqrt {x+1}}{x+\sqrt {x+\sqrt {x+1}}} \, dx\)

\(\Big \downarrow \) 7267

\(\displaystyle 2 \int -\frac {x (x+1)}{-x-\sqrt {x+\sqrt {x+1}}}d\sqrt {x+1}\)

\(\Big \downarrow \) 7293

\(\displaystyle 2 \int \left (\frac {(x+1)^2}{x+\sqrt {x+\sqrt {x+1}}}-\frac {x+1}{x+\sqrt {x+\sqrt {x+1}}}\right )d\sqrt {x+1}\)

\(\Big \downarrow \) 2009

\(\displaystyle 2 \left (-\frac {7}{4} \int \frac {1}{(x+1)^2-3 (x+1)-\sqrt {x+1}+2}d\sqrt {x+1}+\frac {5}{2} \int \frac {\sqrt {x+1}}{(x+1)^2-3 (x+1)-\sqrt {x+1}+2}d\sqrt {x+1}+2 \int \frac {x+1}{(x+1)^2-3 (x+1)-\sqrt {x+1}+2}d\sqrt {x+1}+2 \int \frac {\sqrt {x+\sqrt {x+1}}}{(x+1)^2-3 (x+1)-\sqrt {x+1}+2}d\sqrt {x+1}-\int \frac {\sqrt {x+1} \sqrt {x+\sqrt {x+1}}}{(x+1)^2-3 (x+1)-\sqrt {x+1}+2}d\sqrt {x+1}-2 \int \frac {(x+1) \sqrt {x+\sqrt {x+1}}}{(x+1)^2-3 (x+1)-\sqrt {x+1}+2}d\sqrt {x+1}+\frac {5}{8} \text {arctanh}\left (\frac {2 \sqrt {x+1}+1}{2 \sqrt {x+\sqrt {x+1}}}\right )+\frac {1}{3} (x+1)^{3/2}+\sqrt {x+1}-\frac {1}{4} \sqrt {x+\sqrt {x+1}} \left (2 \sqrt {x+1}+1\right )+\frac {1}{4} \log \left ((x+1)^2-3 (x+1)-\sqrt {x+1}+2\right )\right )\)

input
Int[(x*Sqrt[1 + x])/(x + Sqrt[x + Sqrt[1 + x]]),x]
 
output
$Aborted
 

3.24.94.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7267
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfLinear[u, x]}, Si 
mp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/lst[[2]])], x 
] /;  !FalseQ[lst] && SubstForFractionalPowerQ[u, lst[[3]], x]]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.24.94.4 Maple [N/A] (verified)

Time = 0.22 (sec) , antiderivative size = 526, normalized size of antiderivative = 2.74

method result size
derivativedivides \(-\frac {\left (2 \sqrt {1+x}+1\right ) \sqrt {x +\sqrt {1+x}}}{2}+\frac {5 \ln \left (\frac {1}{2}+\sqrt {1+x}+\sqrt {x +\sqrt {1+x}}\right )}{4}+2 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}+2 \textit {\_Z}^{3}-5 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right )}{\sum }\frac {\left (\textit {\_R}^{3}-6 \textit {\_R}^{2}+2 \textit {\_R} +1\right ) \ln \left (\sqrt {x +\sqrt {1+x}}-\sqrt {1+x}-\textit {\_R} \right )}{4 \textit {\_R}^{3}+6 \textit {\_R}^{2}-10 \textit {\_R} +3}\right )+2 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}-2 \textit {\_Z}^{3}+\textit {\_Z}^{2}+5 \textit {\_Z} -1\right )}{\sum }\frac {\left (-\textit {\_R}^{3}+2 \textit {\_R}^{2}-4 \textit {\_R} -9\right ) \ln \left (\sqrt {x +\sqrt {1+x}}-\sqrt {1+x}-\textit {\_R} \right )}{4 \textit {\_R}^{3}-6 \textit {\_R}^{2}+2 \textit {\_R} +5}\right )+4 \ln \left (-1-2 \sqrt {1+x}+2 \sqrt {x +\sqrt {1+x}}\right )+2 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}-3 \textit {\_Z}^{2}-\textit {\_Z} +2\right )}{\sum }\frac {\textit {\_R}^{2} \ln \left (\sqrt {1+x}-\textit {\_R} \right )}{4 \textit {\_R}^{3}-6 \textit {\_R} -1}\right )+2 \sqrt {1+x}+4 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}-3 \textit {\_Z}^{2}-\textit {\_Z} +2\right )}{\sum }\frac {\left (-3 \textit {\_R}^{2}-\textit {\_R} +2\right ) \ln \left (\sqrt {1+x}-\textit {\_R} \right )}{4 \textit {\_R}^{3}-6 \textit {\_R} -1}\right )+\frac {2 \left (1+x \right )^{\frac {3}{2}}}{3}-2 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}-3 \textit {\_Z}^{2}-\textit {\_Z} +2\right )}{\sum }\frac {\left (-\textit {\_R}^{3}-7 \textit {\_R}^{2}-3 \textit {\_R} +6\right ) \ln \left (\sqrt {1+x}-\textit {\_R} \right )}{4 \textit {\_R}^{3}-6 \textit {\_R} -1}\right )-2 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}+2 \textit {\_Z}^{3}-5 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right )}{\sum }\frac {\left (-3 \textit {\_R}^{2}+2 \textit {\_R} +1\right ) \ln \left (\sqrt {x +\sqrt {1+x}}-\sqrt {1+x}-\textit {\_R} \right )}{4 \textit {\_R}^{3}+6 \textit {\_R}^{2}-10 \textit {\_R} +3}\right )-2 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}-2 \textit {\_Z}^{3}+\textit {\_Z}^{2}+5 \textit {\_Z} -1\right )}{\sum }\frac {\left (\textit {\_R}^{2}-2 \textit {\_R} -3\right ) \ln \left (\sqrt {x +\sqrt {1+x}}-\sqrt {1+x}-\textit {\_R} \right )}{4 \textit {\_R}^{3}-6 \textit {\_R}^{2}+2 \textit {\_R} +5}\right )\) \(526\)
default \(-\frac {\left (2 \sqrt {1+x}+1\right ) \sqrt {x +\sqrt {1+x}}}{2}+\frac {5 \ln \left (\frac {1}{2}+\sqrt {1+x}+\sqrt {x +\sqrt {1+x}}\right )}{4}+2 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}+2 \textit {\_Z}^{3}-5 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right )}{\sum }\frac {\left (\textit {\_R}^{3}-6 \textit {\_R}^{2}+2 \textit {\_R} +1\right ) \ln \left (\sqrt {x +\sqrt {1+x}}-\sqrt {1+x}-\textit {\_R} \right )}{4 \textit {\_R}^{3}+6 \textit {\_R}^{2}-10 \textit {\_R} +3}\right )+2 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}-2 \textit {\_Z}^{3}+\textit {\_Z}^{2}+5 \textit {\_Z} -1\right )}{\sum }\frac {\left (-\textit {\_R}^{3}+2 \textit {\_R}^{2}-4 \textit {\_R} -9\right ) \ln \left (\sqrt {x +\sqrt {1+x}}-\sqrt {1+x}-\textit {\_R} \right )}{4 \textit {\_R}^{3}-6 \textit {\_R}^{2}+2 \textit {\_R} +5}\right )+4 \ln \left (-1-2 \sqrt {1+x}+2 \sqrt {x +\sqrt {1+x}}\right )+2 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}-3 \textit {\_Z}^{2}-\textit {\_Z} +2\right )}{\sum }\frac {\textit {\_R}^{2} \ln \left (\sqrt {1+x}-\textit {\_R} \right )}{4 \textit {\_R}^{3}-6 \textit {\_R} -1}\right )+2 \sqrt {1+x}+4 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}-3 \textit {\_Z}^{2}-\textit {\_Z} +2\right )}{\sum }\frac {\left (-3 \textit {\_R}^{2}-\textit {\_R} +2\right ) \ln \left (\sqrt {1+x}-\textit {\_R} \right )}{4 \textit {\_R}^{3}-6 \textit {\_R} -1}\right )+\frac {2 \left (1+x \right )^{\frac {3}{2}}}{3}-2 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}-3 \textit {\_Z}^{2}-\textit {\_Z} +2\right )}{\sum }\frac {\left (-\textit {\_R}^{3}-7 \textit {\_R}^{2}-3 \textit {\_R} +6\right ) \ln \left (\sqrt {1+x}-\textit {\_R} \right )}{4 \textit {\_R}^{3}-6 \textit {\_R} -1}\right )-2 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}+2 \textit {\_Z}^{3}-5 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right )}{\sum }\frac {\left (-3 \textit {\_R}^{2}+2 \textit {\_R} +1\right ) \ln \left (\sqrt {x +\sqrt {1+x}}-\sqrt {1+x}-\textit {\_R} \right )}{4 \textit {\_R}^{3}+6 \textit {\_R}^{2}-10 \textit {\_R} +3}\right )-2 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}-2 \textit {\_Z}^{3}+\textit {\_Z}^{2}+5 \textit {\_Z} -1\right )}{\sum }\frac {\left (\textit {\_R}^{2}-2 \textit {\_R} -3\right ) \ln \left (\sqrt {x +\sqrt {1+x}}-\sqrt {1+x}-\textit {\_R} \right )}{4 \textit {\_R}^{3}-6 \textit {\_R}^{2}+2 \textit {\_R} +5}\right )\) \(526\)

input
int(x*(1+x)^(1/2)/(x+(x+(1+x)^(1/2))^(1/2)),x,method=_RETURNVERBOSE)
 
output
-1/2*(2*(1+x)^(1/2)+1)*(x+(1+x)^(1/2))^(1/2)+5/4*ln(1/2+(1+x)^(1/2)+(x+(1+ 
x)^(1/2))^(1/2))+2*sum((_R^3-6*_R^2+2*_R+1)/(4*_R^3+6*_R^2-10*_R+3)*ln((x+ 
(1+x)^(1/2))^(1/2)-(1+x)^(1/2)-_R),_R=RootOf(_Z^4+2*_Z^3-5*_Z^2+3*_Z+1))+2 
*sum((-_R^3+2*_R^2-4*_R-9)/(4*_R^3-6*_R^2+2*_R+5)*ln((x+(1+x)^(1/2))^(1/2) 
-(1+x)^(1/2)-_R),_R=RootOf(_Z^4-2*_Z^3+_Z^2+5*_Z-1))+4*ln(-1-2*(1+x)^(1/2) 
+2*(x+(1+x)^(1/2))^(1/2))+2*sum(_R^2/(4*_R^3-6*_R-1)*ln((1+x)^(1/2)-_R),_R 
=RootOf(_Z^4-3*_Z^2-_Z+2))+2*(1+x)^(1/2)+4*sum((-3*_R^2-_R+2)/(4*_R^3-6*_R 
-1)*ln((1+x)^(1/2)-_R),_R=RootOf(_Z^4-3*_Z^2-_Z+2))+2/3*(1+x)^(3/2)-2*sum( 
(-_R^3-7*_R^2-3*_R+6)/(4*_R^3-6*_R-1)*ln((1+x)^(1/2)-_R),_R=RootOf(_Z^4-3* 
_Z^2-_Z+2))-2*sum((-3*_R^2+2*_R+1)/(4*_R^3+6*_R^2-10*_R+3)*ln((x+(1+x)^(1/ 
2))^(1/2)-(1+x)^(1/2)-_R),_R=RootOf(_Z^4+2*_Z^3-5*_Z^2+3*_Z+1))-2*sum((_R^ 
2-2*_R-3)/(4*_R^3-6*_R^2+2*_R+5)*ln((x+(1+x)^(1/2))^(1/2)-(1+x)^(1/2)-_R), 
_R=RootOf(_Z^4-2*_Z^3+_Z^2+5*_Z-1))
 
3.24.94.5 Fricas [F(-1)]

Timed out. \[ \int \frac {x \sqrt {1+x}}{x+\sqrt {x+\sqrt {1+x}}} \, dx=\text {Timed out} \]

input
integrate(x*(1+x)^(1/2)/(x+(x+(1+x)^(1/2))^(1/2)),x, algorithm="fricas")
 
output
Timed out
 
3.24.94.6 Sympy [N/A]

Not integrable

Time = 1.55 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.11 \[ \int \frac {x \sqrt {1+x}}{x+\sqrt {x+\sqrt {1+x}}} \, dx=\int \frac {x \sqrt {x + 1}}{x + \sqrt {x + \sqrt {x + 1}}}\, dx \]

input
integrate(x*(1+x)**(1/2)/(x+(x+(1+x)**(1/2))**(1/2)),x)
 
output
Integral(x*sqrt(x + 1)/(x + sqrt(x + sqrt(x + 1))), x)
 
3.24.94.7 Maxima [N/A]

Not integrable

Time = 0.24 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.11 \[ \int \frac {x \sqrt {1+x}}{x+\sqrt {x+\sqrt {1+x}}} \, dx=\int { \frac {\sqrt {x + 1} x}{x + \sqrt {x + \sqrt {x + 1}}} \,d x } \]

input
integrate(x*(1+x)^(1/2)/(x+(x+(1+x)^(1/2))^(1/2)),x, algorithm="maxima")
 
output
integrate(sqrt(x + 1)*x/(x + sqrt(x + sqrt(x + 1))), x)
 
3.24.94.8 Giac [N/A]

Not integrable

Time = 1.06 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.11 \[ \int \frac {x \sqrt {1+x}}{x+\sqrt {x+\sqrt {1+x}}} \, dx=\int { \frac {\sqrt {x + 1} x}{x + \sqrt {x + \sqrt {x + 1}}} \,d x } \]

input
integrate(x*(1+x)^(1/2)/(x+(x+(1+x)^(1/2))^(1/2)),x, algorithm="giac")
 
output
integrate(sqrt(x + 1)*x/(x + sqrt(x + sqrt(x + 1))), x)
 
3.24.94.9 Mupad [N/A]

Not integrable

Time = 6.08 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.11 \[ \int \frac {x \sqrt {1+x}}{x+\sqrt {x+\sqrt {1+x}}} \, dx=\int \frac {x\,\sqrt {x+1}}{x+\sqrt {x+\sqrt {x+1}}} \,d x \]

input
int((x*(x + 1)^(1/2))/(x + (x + (x + 1)^(1/2))^(1/2)),x)
 
output
int((x*(x + 1)^(1/2))/(x + (x + (x + 1)^(1/2))^(1/2)), x)