3.24.100 \(\int \frac {x}{(1-x^2) \sqrt {a+b x+c x^2+b x^3+a x^4}} \, dx\) [2400]

3.24.100.1 Optimal result
3.24.100.2 Mathematica [A] (verified)
3.24.100.3 Rubi [F]
3.24.100.4 Maple [A] (verified)
3.24.100.5 Fricas [B] (verification not implemented)
3.24.100.6 Sympy [F]
3.24.100.7 Maxima [F]
3.24.100.8 Giac [F]
3.24.100.9 Mupad [F(-1)]

3.24.100.1 Optimal result

Integrand size = 35, antiderivative size = 193 \[ \int \frac {x}{\left (1-x^2\right ) \sqrt {a+b x+c x^2+b x^3+a x^4}} \, dx=\frac {\sqrt {-2 a-2 b-c} \arctan \left (\frac {\sqrt {-2 a-2 b-c} x}{\sqrt {a}-2 \sqrt {a} x+\sqrt {a} x^2-\sqrt {a+b x+c x^2+b x^3+a x^4}}\right )}{2 (2 a+2 b+c)}-\frac {\sqrt {-2 a+2 b-c} \arctan \left (\frac {\sqrt {-2 a+2 b-c} x}{\sqrt {a}+2 \sqrt {a} x+\sqrt {a} x^2-\sqrt {a+b x+c x^2+b x^3+a x^4}}\right )}{2 (2 a-2 b+c)} \]

output
(-2*a-2*b-c)^(1/2)*arctan((-2*a-2*b-c)^(1/2)*x/(a^(1/2)-2*x*a^(1/2)+a^(1/2 
)*x^2-(a*x^4+b*x^3+c*x^2+b*x+a)^(1/2)))/(4*a+4*b+2*c)-(-2*a+2*b-c)^(1/2)*a 
rctan((-2*a+2*b-c)^(1/2)*x/(a^(1/2)+2*x*a^(1/2)+a^(1/2)*x^2-(a*x^4+b*x^3+c 
*x^2+b*x+a)^(1/2)))/(4*a-4*b+2*c)
 
3.24.100.2 Mathematica [A] (verified)

Time = 1.03 (sec) , antiderivative size = 150, normalized size of antiderivative = 0.78 \[ \int \frac {x}{\left (1-x^2\right ) \sqrt {a+b x+c x^2+b x^3+a x^4}} \, dx=\frac {1}{2} \left (-\frac {\arctan \left (\frac {\sqrt {-2 a-2 b-c} x}{\sqrt {a} (-1+x)^2-\sqrt {a+b x+c x^2+b x^3+a x^4}}\right )}{\sqrt {-2 a-2 b-c}}+\frac {\arctan \left (\frac {\sqrt {-2 a+2 b-c} x}{\sqrt {a} (1+x)^2-\sqrt {a+b x+c x^2+b x^3+a x^4}}\right )}{\sqrt {-2 a+2 b-c}}\right ) \]

input
Integrate[x/((1 - x^2)*Sqrt[a + b*x + c*x^2 + b*x^3 + a*x^4]),x]
 
output
(-(ArcTan[(Sqrt[-2*a - 2*b - c]*x)/(Sqrt[a]*(-1 + x)^2 - Sqrt[a + b*x + c* 
x^2 + b*x^3 + a*x^4])]/Sqrt[-2*a - 2*b - c]) + ArcTan[(Sqrt[-2*a + 2*b - c 
]*x)/(Sqrt[a]*(1 + x)^2 - Sqrt[a + b*x + c*x^2 + b*x^3 + a*x^4])]/Sqrt[-2* 
a + 2*b - c])/2
 
3.24.100.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x}{\left (1-x^2\right ) \sqrt {a x^4+a+b x^3+b x+c x^2}} \, dx\)

\(\Big \downarrow \) 7276

\(\displaystyle \int \left (-\frac {1}{2 (x-1) \sqrt {a x^4+a+b x^3+b x+c x^2}}-\frac {1}{2 (x+1) \sqrt {a x^4+a+b x^3+b x+c x^2}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {1}{2} \int \frac {1}{(x-1) \sqrt {a x^4+b x^3+c x^2+b x+a}}dx-\frac {1}{2} \int \frac {1}{(x+1) \sqrt {a x^4+b x^3+c x^2+b x+a}}dx\)

input
Int[x/((1 - x^2)*Sqrt[a + b*x + c*x^2 + b*x^3 + a*x^4]),x]
 
output
$Aborted
 

3.24.100.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.24.100.4 Maple [A] (verified)

Time = 2.12 (sec) , antiderivative size = 181, normalized size of antiderivative = 0.94

method result size
default \(-\frac {\ln \left (\frac {2 \sqrt {2 a -2 b +c}\, \sqrt {a \,x^{4}+b \,x^{3}+c \,x^{2}+b x +a}+\left (b -4 a \right ) x^{2}+\left (-4 a -2 b +2 c \right ) x -4 a +b}{\left (1+x \right )^{2}}\right ) \sqrt {2 a +2 b +c}-\ln \left (\frac {2 \sqrt {2 a +2 b +c}\, \sqrt {a \,x^{4}+b \,x^{3}+c \,x^{2}+b x +a}+\left (4 a +b \right ) x^{2}+\left (-4 a +2 b +2 c \right ) x +4 a +b}{\left (-1+x \right )^{2}}\right ) \sqrt {2 a -2 b +c}}{4 \sqrt {2 a -2 b +c}\, \sqrt {2 a +2 b +c}}\) \(181\)
pseudoelliptic \(\frac {-\ln \left (\frac {2 \sqrt {2 a -2 b +c}\, \sqrt {a \,x^{4}+b \,x^{3}+c \,x^{2}+b x +a}+\left (b -4 a \right ) x^{2}+\left (-4 a -2 b +2 c \right ) x -4 a +b}{\left (1+x \right )^{2}}\right ) \sqrt {2 a +2 b +c}+\ln \left (\frac {2 \sqrt {2 a +2 b +c}\, \sqrt {a \,x^{4}+b \,x^{3}+c \,x^{2}+b x +a}+\left (4 a +b \right ) x^{2}+\left (-4 a +2 b +2 c \right ) x +4 a +b}{\left (-1+x \right )^{2}}\right ) \sqrt {2 a -2 b +c}}{4 \sqrt {2 a -2 b +c}\, \sqrt {2 a +2 b +c}}\) \(181\)
elliptic \(\text {Expression too large to display}\) \(78106\)

input
int(x/(-x^2+1)/(a*x^4+b*x^3+c*x^2+b*x+a)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/4*(ln((2*(2*a-2*b+c)^(1/2)*(a*x^4+b*x^3+c*x^2+b*x+a)^(1/2)+(b-4*a)*x^2+ 
(-4*a-2*b+2*c)*x-4*a+b)/(1+x)^2)*(2*a+2*b+c)^(1/2)-ln((2*(2*a+2*b+c)^(1/2) 
*(a*x^4+b*x^3+c*x^2+b*x+a)^(1/2)+(4*a+b)*x^2+(-4*a+2*b+2*c)*x+4*a+b)/(-1+x 
)^2)*(2*a-2*b+c)^(1/2))/(2*a-2*b+c)^(1/2)/(2*a+2*b+c)^(1/2)
 
3.24.100.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 354 vs. \(2 (165) = 330\).

Time = 0.61 (sec) , antiderivative size = 1661, normalized size of antiderivative = 8.61 \[ \int \frac {x}{\left (1-x^2\right ) \sqrt {a+b x+c x^2+b x^3+a x^4}} \, dx=\text {Too large to display} \]

input
integrate(x/(-x^2+1)/(a*x^4+b*x^3+c*x^2+b*x+a)^(1/2),x, algorithm="fricas" 
)
 
output
[1/8*((2*a + 2*b + c)*sqrt(2*a - 2*b + c)*log(((24*a^2 - 16*a*b + b^2 + 4* 
a*c)*x^4 + 4*(8*a^2 + 4*a*b - 3*b^2 - 2*(2*a - b)*c)*x^3 + 2*(24*a^2 + 3*b 
^2 - 4*(a + 2*b)*c + 4*c^2)*x^2 + 4*sqrt(a*x^4 + b*x^3 + c*x^2 + b*x + a)* 
((4*a - b)*x^2 + 2*(2*a + b - c)*x + 4*a - b)*sqrt(2*a - 2*b + c) + 24*a^2 
 - 16*a*b + b^2 + 4*a*c + 4*(8*a^2 + 4*a*b - 3*b^2 - 2*(2*a - b)*c)*x)/(x^ 
4 + 4*x^3 + 6*x^2 + 4*x + 1)) + sqrt(2*a + 2*b + c)*(2*a - 2*b + c)*log((( 
24*a^2 + 16*a*b + b^2 + 4*a*c)*x^4 - 4*(8*a^2 - 4*a*b - 3*b^2 - 2*(2*a + b 
)*c)*x^3 + 2*(24*a^2 + 3*b^2 - 4*(a - 2*b)*c + 4*c^2)*x^2 + 4*sqrt(a*x^4 + 
 b*x^3 + c*x^2 + b*x + a)*((4*a + b)*x^2 - 2*(2*a - b - c)*x + 4*a + b)*sq 
rt(2*a + 2*b + c) + 24*a^2 + 16*a*b + b^2 + 4*a*c - 4*(8*a^2 - 4*a*b - 3*b 
^2 - 2*(2*a + b)*c)*x)/(x^4 - 4*x^3 + 6*x^2 - 4*x + 1)))/(4*a^2 - 4*b^2 + 
4*a*c + c^2), -1/8*(2*(2*a - 2*b + c)*sqrt(-2*a - 2*b - c)*arctan(1/2*sqrt 
(a*x^4 + b*x^3 + c*x^2 + b*x + a)*((4*a + b)*x^2 - 2*(2*a - b - c)*x + 4*a 
 + b)*sqrt(-2*a - 2*b - c)/((2*a^2 + 2*a*b + a*c)*x^4 + (2*a*b + 2*b^2 + b 
*c)*x^3 + (2*(a + b)*c + c^2)*x^2 + 2*a^2 + 2*a*b + a*c + (2*a*b + 2*b^2 + 
 b*c)*x)) - (2*a + 2*b + c)*sqrt(2*a - 2*b + c)*log(((24*a^2 - 16*a*b + b^ 
2 + 4*a*c)*x^4 + 4*(8*a^2 + 4*a*b - 3*b^2 - 2*(2*a - b)*c)*x^3 + 2*(24*a^2 
 + 3*b^2 - 4*(a + 2*b)*c + 4*c^2)*x^2 + 4*sqrt(a*x^4 + b*x^3 + c*x^2 + b*x 
 + a)*((4*a - b)*x^2 + 2*(2*a + b - c)*x + 4*a - b)*sqrt(2*a - 2*b + c) + 
24*a^2 - 16*a*b + b^2 + 4*a*c + 4*(8*a^2 + 4*a*b - 3*b^2 - 2*(2*a - b)*...
 
3.24.100.6 Sympy [F]

\[ \int \frac {x}{\left (1-x^2\right ) \sqrt {a+b x+c x^2+b x^3+a x^4}} \, dx=- \int \frac {x}{x^{2} \sqrt {a x^{4} + a + b x^{3} + b x + c x^{2}} - \sqrt {a x^{4} + a + b x^{3} + b x + c x^{2}}}\, dx \]

input
integrate(x/(-x**2+1)/(a*x**4+b*x**3+c*x**2+b*x+a)**(1/2),x)
 
output
-Integral(x/(x**2*sqrt(a*x**4 + a + b*x**3 + b*x + c*x**2) - sqrt(a*x**4 + 
 a + b*x**3 + b*x + c*x**2)), x)
 
3.24.100.7 Maxima [F]

\[ \int \frac {x}{\left (1-x^2\right ) \sqrt {a+b x+c x^2+b x^3+a x^4}} \, dx=\int { -\frac {x}{\sqrt {a x^{4} + b x^{3} + c x^{2} + b x + a} {\left (x^{2} - 1\right )}} \,d x } \]

input
integrate(x/(-x^2+1)/(a*x^4+b*x^3+c*x^2+b*x+a)^(1/2),x, algorithm="maxima" 
)
 
output
-integrate(x/(sqrt(a*x^4 + b*x^3 + c*x^2 + b*x + a)*(x^2 - 1)), x)
 
3.24.100.8 Giac [F]

\[ \int \frac {x}{\left (1-x^2\right ) \sqrt {a+b x+c x^2+b x^3+a x^4}} \, dx=\int { -\frac {x}{\sqrt {a x^{4} + b x^{3} + c x^{2} + b x + a} {\left (x^{2} - 1\right )}} \,d x } \]

input
integrate(x/(-x^2+1)/(a*x^4+b*x^3+c*x^2+b*x+a)^(1/2),x, algorithm="giac")
 
output
integrate(-x/(sqrt(a*x^4 + b*x^3 + c*x^2 + b*x + a)*(x^2 - 1)), x)
 
3.24.100.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x}{\left (1-x^2\right ) \sqrt {a+b x+c x^2+b x^3+a x^4}} \, dx=-\int \frac {x}{\left (x^2-1\right )\,\sqrt {a\,x^4+b\,x^3+c\,x^2+b\,x+a}} \,d x \]

input
int(-x/((x^2 - 1)*(a + b*x + a*x^4 + b*x^3 + c*x^2)^(1/2)),x)
 
output
-int(x/((x^2 - 1)*(a + b*x + a*x^4 + b*x^3 + c*x^2)^(1/2)), x)