3.25.3 \(\int \frac {1}{\sqrt [4]{1+x^4} (-1+x^4+x^8)} \, dx\) [2403]

3.25.3.1 Optimal result
3.25.3.2 Mathematica [A] (verified)
3.25.3.3 Rubi [A] (verified)
3.25.3.4 Maple [A] (verified)
3.25.3.5 Fricas [B] (verification not implemented)
3.25.3.6 Sympy [F]
3.25.3.7 Maxima [F]
3.25.3.8 Giac [F]
3.25.3.9 Mupad [F(-1)]

3.25.3.1 Optimal result

Integrand size = 20, antiderivative size = 193 \[ \int \frac {1}{\sqrt [4]{1+x^4} \left (-1+x^4+x^8\right )} \, dx=-\frac {1}{2} \sqrt {\frac {1}{10} \left (-1+\sqrt {5}\right )} \arctan \left (\frac {\sqrt {-\frac {1}{2}+\frac {\sqrt {5}}{2}} x}{\sqrt [4]{1+x^4}}\right )-\frac {1}{2} \sqrt {\frac {1}{10} \left (1+\sqrt {5}\right )} \arctan \left (\frac {\sqrt {\frac {1}{2}+\frac {\sqrt {5}}{2}} x}{\sqrt [4]{1+x^4}}\right )-\frac {1}{2} \sqrt {\frac {1}{10} \left (-1+\sqrt {5}\right )} \text {arctanh}\left (\frac {\sqrt {-\frac {1}{2}+\frac {\sqrt {5}}{2}} x}{\sqrt [4]{1+x^4}}\right )-\frac {1}{2} \sqrt {\frac {1}{10} \left (1+\sqrt {5}\right )} \text {arctanh}\left (\frac {\sqrt {\frac {1}{2}+\frac {\sqrt {5}}{2}} x}{\sqrt [4]{1+x^4}}\right ) \]

output
-1/20*(-10+10*5^(1/2))^(1/2)*arctan(1/2*(-2+2*5^(1/2))^(1/2)*x/(x^4+1)^(1/ 
4))-1/20*(10+10*5^(1/2))^(1/2)*arctan(1/2*(2+2*5^(1/2))^(1/2)*x/(x^4+1)^(1 
/4))-1/20*(-10+10*5^(1/2))^(1/2)*arctanh(1/2*(-2+2*5^(1/2))^(1/2)*x/(x^4+1 
)^(1/4))-1/20*(10+10*5^(1/2))^(1/2)*arctanh(1/2*(2+2*5^(1/2))^(1/2)*x/(x^4 
+1)^(1/4))
 
3.25.3.2 Mathematica [A] (verified)

Time = 0.45 (sec) , antiderivative size = 166, normalized size of antiderivative = 0.86 \[ \int \frac {1}{\sqrt [4]{1+x^4} \left (-1+x^4+x^8\right )} \, dx=-\frac {\sqrt {-1+\sqrt {5}} \arctan \left (\frac {\sqrt {\frac {1}{2} \left (-1+\sqrt {5}\right )} x}{\sqrt [4]{1+x^4}}\right )+\sqrt {1+\sqrt {5}} \arctan \left (\frac {\sqrt {\frac {1}{2} \left (1+\sqrt {5}\right )} x}{\sqrt [4]{1+x^4}}\right )+\sqrt {-1+\sqrt {5}} \text {arctanh}\left (\frac {\sqrt {\frac {1}{2} \left (-1+\sqrt {5}\right )} x}{\sqrt [4]{1+x^4}}\right )+\sqrt {1+\sqrt {5}} \text {arctanh}\left (\frac {\sqrt {\frac {1}{2} \left (1+\sqrt {5}\right )} x}{\sqrt [4]{1+x^4}}\right )}{2 \sqrt {10}} \]

input
Integrate[1/((1 + x^4)^(1/4)*(-1 + x^4 + x^8)),x]
 
output
-1/2*(Sqrt[-1 + Sqrt[5]]*ArcTan[(Sqrt[(-1 + Sqrt[5])/2]*x)/(1 + x^4)^(1/4) 
] + Sqrt[1 + Sqrt[5]]*ArcTan[(Sqrt[(1 + Sqrt[5])/2]*x)/(1 + x^4)^(1/4)] + 
Sqrt[-1 + Sqrt[5]]*ArcTanh[(Sqrt[(-1 + Sqrt[5])/2]*x)/(1 + x^4)^(1/4)] + S 
qrt[1 + Sqrt[5]]*ArcTanh[(Sqrt[(1 + Sqrt[5])/2]*x)/(1 + x^4)^(1/4)])/Sqrt[ 
10]
 
3.25.3.3 Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.08, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {1758, 902, 756, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt [4]{x^4+1} \left (x^8+x^4-1\right )} \, dx\)

\(\Big \downarrow \) 1758

\(\displaystyle \frac {2 \int \frac {1}{\sqrt [4]{x^4+1} \left (2 x^4-\sqrt {5}+1\right )}dx}{\sqrt {5}}-\frac {2 \int \frac {1}{\sqrt [4]{x^4+1} \left (2 x^4+\sqrt {5}+1\right )}dx}{\sqrt {5}}\)

\(\Big \downarrow \) 902

\(\displaystyle \frac {2 \int \frac {1}{-\frac {\left (-1-\sqrt {5}\right ) x^4}{x^4+1}-\sqrt {5}+1}d\frac {x}{\sqrt [4]{x^4+1}}}{\sqrt {5}}-\frac {2 \int \frac {1}{-\frac {\left (-1+\sqrt {5}\right ) x^4}{x^4+1}+\sqrt {5}+1}d\frac {x}{\sqrt [4]{x^4+1}}}{\sqrt {5}}\)

\(\Big \downarrow \) 756

\(\displaystyle \frac {2 \left (-\frac {\int \frac {1}{\sqrt {3-\sqrt {5}}-\frac {\sqrt {2} x^2}{\sqrt {x^4+1}}}d\frac {x}{\sqrt [4]{x^4+1}}}{2 \sqrt {2}}-\frac {\int \frac {1}{\frac {\sqrt {2} x^2}{\sqrt {x^4+1}}+\sqrt {3-\sqrt {5}}}d\frac {x}{\sqrt [4]{x^4+1}}}{2 \sqrt {2}}\right )}{\sqrt {5}}-\frac {2 \left (\frac {\int \frac {1}{\sqrt {3+\sqrt {5}}-\frac {\sqrt {2} x^2}{\sqrt {x^4+1}}}d\frac {x}{\sqrt [4]{x^4+1}}}{2 \sqrt {2}}+\frac {\int \frac {1}{\frac {\sqrt {2} x^2}{\sqrt {x^4+1}}+\sqrt {3+\sqrt {5}}}d\frac {x}{\sqrt [4]{x^4+1}}}{2 \sqrt {2}}\right )}{\sqrt {5}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {2 \left (-\frac {\int \frac {1}{\sqrt {3-\sqrt {5}}-\frac {\sqrt {2} x^2}{\sqrt {x^4+1}}}d\frac {x}{\sqrt [4]{x^4+1}}}{2 \sqrt {2}}-\frac {\arctan \left (\frac {\sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} x}{\sqrt [4]{x^4+1}}\right )}{2\ 2^{3/4} \sqrt [4]{3-\sqrt {5}}}\right )}{\sqrt {5}}-\frac {2 \left (\frac {\int \frac {1}{\sqrt {3+\sqrt {5}}-\frac {\sqrt {2} x^2}{\sqrt {x^4+1}}}d\frac {x}{\sqrt [4]{x^4+1}}}{2 \sqrt {2}}+\frac {\arctan \left (\frac {\sqrt [4]{\frac {2}{3+\sqrt {5}}} x}{\sqrt [4]{x^4+1}}\right )}{2\ 2^{3/4} \sqrt [4]{3+\sqrt {5}}}\right )}{\sqrt {5}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 \left (-\frac {\arctan \left (\frac {\sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} x}{\sqrt [4]{x^4+1}}\right )}{2\ 2^{3/4} \sqrt [4]{3-\sqrt {5}}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} x}{\sqrt [4]{x^4+1}}\right )}{2\ 2^{3/4} \sqrt [4]{3-\sqrt {5}}}\right )}{\sqrt {5}}-\frac {2 \left (\frac {\arctan \left (\frac {\sqrt [4]{\frac {2}{3+\sqrt {5}}} x}{\sqrt [4]{x^4+1}}\right )}{2\ 2^{3/4} \sqrt [4]{3+\sqrt {5}}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{\frac {2}{3+\sqrt {5}}} x}{\sqrt [4]{x^4+1}}\right )}{2\ 2^{3/4} \sqrt [4]{3+\sqrt {5}}}\right )}{\sqrt {5}}\)

input
Int[1/((1 + x^4)^(1/4)*(-1 + x^4 + x^8)),x]
 
output
(-2*(ArcTan[((2/(3 + Sqrt[5]))^(1/4)*x)/(1 + x^4)^(1/4)]/(2*2^(3/4)*(3 + S 
qrt[5])^(1/4)) + ArcTanh[((2/(3 + Sqrt[5]))^(1/4)*x)/(1 + x^4)^(1/4)]/(2*2 
^(3/4)*(3 + Sqrt[5])^(1/4))))/Sqrt[5] + (2*(-1/2*ArcTan[(((3 + Sqrt[5])/2) 
^(1/4)*x)/(1 + x^4)^(1/4)]/(2^(3/4)*(3 - Sqrt[5])^(1/4)) - ArcTanh[(((3 + 
Sqrt[5])/2)^(1/4)*x)/(1 + x^4)^(1/4)]/(2*2^(3/4)*(3 - Sqrt[5])^(1/4))))/Sq 
rt[5]
 

3.25.3.3.1 Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 902
Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Su 
bst[Int[1/(c - (b*c - a*d)*x^n), x], x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b 
, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]
 

rule 1758
Int[((d_) + (e_.)*(x_)^(n_))^(q_)/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_ 
)), x_Symbol] :> With[{r = Rt[b^2 - 4*a*c, 2]}, Simp[2*(c/r)   Int[(d + e*x 
^n)^q/(b - r + 2*c*x^n), x], x] - Simp[2*(c/r)   Int[(d + e*x^n)^q/(b + r + 
 2*c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n, q}, x] && EqQ[n2, 2*n] && Ne 
Q[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[q]
 
3.25.3.4 Maple [A] (verified)

Time = 11.24 (sec) , antiderivative size = 131, normalized size of antiderivative = 0.68

method result size
pseudoelliptic \(-\frac {\sqrt {5}\, \left (\left (\operatorname {arctanh}\left (\frac {2 \left (x^{4}+1\right )^{\frac {1}{4}}}{\sqrt {2+2 \sqrt {5}}\, x}\right )-\arctan \left (\frac {2 \left (x^{4}+1\right )^{\frac {1}{4}}}{\sqrt {2+2 \sqrt {5}}\, x}\right )\right ) \left (\sqrt {5}+1\right ) \sqrt {-2+2 \sqrt {5}}+\sqrt {2+2 \sqrt {5}}\, \left (\sqrt {5}-1\right ) \left (\operatorname {arctanh}\left (\frac {2 \left (x^{4}+1\right )^{\frac {1}{4}}}{\sqrt {-2+2 \sqrt {5}}\, x}\right )-\arctan \left (\frac {2 \left (x^{4}+1\right )^{\frac {1}{4}}}{\sqrt {-2+2 \sqrt {5}}\, x}\right )\right )\right )}{40}\) \(131\)
trager \(\text {Expression too large to display}\) \(1671\)

input
int(1/(x^4+1)^(1/4)/(x^8+x^4-1),x,method=_RETURNVERBOSE)
 
output
-1/40*5^(1/2)*((arctanh(2/(2+2*5^(1/2))^(1/2)/x*(x^4+1)^(1/4))-arctan(2/(2 
+2*5^(1/2))^(1/2)/x*(x^4+1)^(1/4)))*(5^(1/2)+1)*(-2+2*5^(1/2))^(1/2)+(2+2* 
5^(1/2))^(1/2)*(5^(1/2)-1)*(arctanh(2/(-2+2*5^(1/2))^(1/2)/x*(x^4+1)^(1/4) 
)-arctan(2/(-2+2*5^(1/2))^(1/2)/x*(x^4+1)^(1/4))))
 
3.25.3.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1189 vs. \(2 (125) = 250\).

Time = 15.09 (sec) , antiderivative size = 1189, normalized size of antiderivative = 6.16 \[ \int \frac {1}{\sqrt [4]{1+x^4} \left (-1+x^4+x^8\right )} \, dx=\text {Too large to display} \]

input
integrate(1/(x^4+1)^(1/4)/(x^8+x^4-1),x, algorithm="fricas")
 
output
-1/80*sqrt(10)*sqrt(-sqrt(5) + 1)*log((sqrt(10)*sqrt(x^4 + 1)*(5*x^2 - sqr 
t(5)*(2*x^6 + x^2))*sqrt(-sqrt(5) + 1) + sqrt(10)*(5*x^8 + 5*x^4 - sqrt(5) 
*(2*x^4 + 1))*sqrt(-sqrt(5) + 1) + 10*(2*x^5 - sqrt(5)*x + x)*(x^4 + 1)^(3 
/4) + 10*(x^7 + 3*x^3 - sqrt(5)*(x^7 + x^3))*(x^4 + 1)^(1/4))/(x^8 + x^4 - 
 1)) + 1/80*sqrt(10)*sqrt(-sqrt(5) + 1)*log(-(sqrt(10)*sqrt(x^4 + 1)*(5*x^ 
2 - sqrt(5)*(2*x^6 + x^2))*sqrt(-sqrt(5) + 1) + sqrt(10)*(5*x^8 + 5*x^4 - 
sqrt(5)*(2*x^4 + 1))*sqrt(-sqrt(5) + 1) - 10*(2*x^5 - sqrt(5)*x + x)*(x^4 
+ 1)^(3/4) - 10*(x^7 + 3*x^3 - sqrt(5)*(x^7 + x^3))*(x^4 + 1)^(1/4))/(x^8 
+ x^4 - 1)) + 1/80*sqrt(10)*sqrt(-sqrt(5) - 1)*log((sqrt(10)*sqrt(x^4 + 1) 
*(5*x^2 + sqrt(5)*(2*x^6 + x^2))*sqrt(-sqrt(5) - 1) - sqrt(10)*(5*x^8 + 5* 
x^4 + sqrt(5)*(2*x^4 + 1))*sqrt(-sqrt(5) - 1) + 10*(2*x^5 + sqrt(5)*x + x) 
*(x^4 + 1)^(3/4) - 10*(x^7 + 3*x^3 + sqrt(5)*(x^7 + x^3))*(x^4 + 1)^(1/4)) 
/(x^8 + x^4 - 1)) - 1/80*sqrt(10)*sqrt(-sqrt(5) - 1)*log(-(sqrt(10)*sqrt(x 
^4 + 1)*(5*x^2 + sqrt(5)*(2*x^6 + x^2))*sqrt(-sqrt(5) - 1) - sqrt(10)*(5*x 
^8 + 5*x^4 + sqrt(5)*(2*x^4 + 1))*sqrt(-sqrt(5) - 1) - 10*(2*x^5 + sqrt(5) 
*x + x)*(x^4 + 1)^(3/4) + 10*(x^7 + 3*x^3 + sqrt(5)*(x^7 + x^3))*(x^4 + 1) 
^(1/4))/(x^8 + x^4 - 1)) - 1/80*sqrt(10)*sqrt(sqrt(5) + 1)*log((10*(2*x^5 
+ sqrt(5)*x + x)*(x^4 + 1)^(3/4) + (sqrt(10)*sqrt(x^4 + 1)*(5*x^2 + sqrt(5 
)*(2*x^6 + x^2)) + sqrt(10)*(5*x^8 + 5*x^4 + sqrt(5)*(2*x^4 + 1)))*sqrt(sq 
rt(5) + 1) + 10*(x^7 + 3*x^3 + sqrt(5)*(x^7 + x^3))*(x^4 + 1)^(1/4))/(x...
 
3.25.3.6 Sympy [F]

\[ \int \frac {1}{\sqrt [4]{1+x^4} \left (-1+x^4+x^8\right )} \, dx=\int \frac {1}{\sqrt [4]{x^{4} + 1} \left (x^{8} + x^{4} - 1\right )}\, dx \]

input
integrate(1/(x**4+1)**(1/4)/(x**8+x**4-1),x)
 
output
Integral(1/((x**4 + 1)**(1/4)*(x**8 + x**4 - 1)), x)
 
3.25.3.7 Maxima [F]

\[ \int \frac {1}{\sqrt [4]{1+x^4} \left (-1+x^4+x^8\right )} \, dx=\int { \frac {1}{{\left (x^{8} + x^{4} - 1\right )} {\left (x^{4} + 1\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate(1/(x^4+1)^(1/4)/(x^8+x^4-1),x, algorithm="maxima")
 
output
integrate(1/((x^8 + x^4 - 1)*(x^4 + 1)^(1/4)), x)
 
3.25.3.8 Giac [F]

\[ \int \frac {1}{\sqrt [4]{1+x^4} \left (-1+x^4+x^8\right )} \, dx=\int { \frac {1}{{\left (x^{8} + x^{4} - 1\right )} {\left (x^{4} + 1\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate(1/(x^4+1)^(1/4)/(x^8+x^4-1),x, algorithm="giac")
 
output
integrate(1/((x^8 + x^4 - 1)*(x^4 + 1)^(1/4)), x)
 
3.25.3.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt [4]{1+x^4} \left (-1+x^4+x^8\right )} \, dx=\int \frac {1}{{\left (x^4+1\right )}^{1/4}\,\left (x^8+x^4-1\right )} \,d x \]

input
int(1/((x^4 + 1)^(1/4)*(x^4 + x^8 - 1)),x)
 
output
int(1/((x^4 + 1)^(1/4)*(x^4 + x^8 - 1)), x)