3.25.20 \(\int \frac {(x^2 c_3-c_4) (x+3 x^2 c_3+3 c_4)}{x \sqrt {\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}} (-x^2+x^4 c_3{}^2+2 x^2 c_3 c_4+c_4{}^2)} \, dx\) [2420]

3.25.20.1 Optimal result
3.25.20.2 Mathematica [B] (warning: unable to verify)
3.25.20.3 Rubi [F]
3.25.20.4 Maple [B] (warning: unable to verify)
3.25.20.5 Fricas [F(-1)]
3.25.20.6 Sympy [F(-1)]
3.25.20.7 Maxima [F]
3.25.20.8 Giac [F]
3.25.20.9 Mupad [F(-1)]

3.25.20.1 Optimal result

Integrand size = 90, antiderivative size = 195 \[ \int \frac {\left (x^2 c_3-c_4\right ) \left (x+3 x^2 c_3+3 c_4\right )}{x \sqrt {\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}} \left (-x^2+x^4 c_3{}^2+2 x^2 c_3 c_4+c_4{}^2\right )} \, dx=6 \text {arctanh}\left (\sqrt {\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}}\right )-\frac {2 \arctan \left (\frac {\sqrt {1-c_0} \sqrt {-1+c_1} \sqrt {\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}}}{-1+c_0}\right ) \sqrt {-1+c_1}}{\sqrt {1-c_0}}-\frac {4 \arctan \left (\frac {\sqrt {-1-c_0} \sqrt {1+c_1} \sqrt {\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}}}{1+c_0}\right ) \sqrt {1+c_1}}{\sqrt {-1-c_0}} \]

output
6*arctanh(((_C3*x^2+_C0*x+_C4)/(_C3*x^2+_C1*x+_C4))^(1/2))-2*arctan((1-_C0 
)^(1/2)*(-1+_C1)^(1/2)*((_C3*x^2+_C0*x+_C4)/(_C3*x^2+_C1*x+_C4))^(1/2)/(-1 
+_C0))*(-1+_C1)^(1/2)/(1-_C0)^(1/2)-4*arctan((-1-_C0)^(1/2)*(1+_C1)^(1/2)* 
((_C3*x^2+_C0*x+_C4)/(_C3*x^2+_C1*x+_C4))^(1/2)/(1+_C0))*(1+_C1)^(1/2)/(-1 
-_C0)^(1/2)
 
3.25.20.2 Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(43491\) vs. \(2(195)=390\).

Time = 6.51 (sec) , antiderivative size = 43491, normalized size of antiderivative = 223.03 \[ \int \frac {\left (x^2 c_3-c_4\right ) \left (x+3 x^2 c_3+3 c_4\right )}{x \sqrt {\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}} \left (-x^2+x^4 c_3{}^2+2 x^2 c_3 c_4+c_4{}^2\right )} \, dx=\text {Result too large to show} \]

input
Integrate[((x^2*C[3] - C[4])*(x + 3*x^2*C[3] + 3*C[4]))/(x*Sqrt[(x*C[0] + 
x^2*C[3] + C[4])/(x*C[1] + x^2*C[3] + C[4])]*(-x^2 + x^4*C[3]^2 + 2*x^2*C[ 
3]*C[4] + C[4]^2)),x]
 
output
Result too large to show
 
3.25.20.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (c_3 x^2-c_4\right ) \left (3 c_3 x^2+x+3 c_4\right )}{x \sqrt {\frac {c_3 x^2+c_0 x+c_4}{c_3 x^2+c_1 x+c_4}} \left (c_3{}^2 x^4-x^2+2 c_3 c_4 x^2+c_4{}^2\right )} \, dx\)

\(\Big \downarrow \) 6

\(\displaystyle \int \frac {\left (c_3 x^2-c_4\right ) \left (3 c_3 x^2+x+3 c_4\right )}{x \sqrt {\frac {c_3 x^2+c_0 x+c_4}{c_3 x^2+c_1 x+c_4}} \left (c_3{}^2 x^4+(-1+2 c_3 c_4) x^2+c_4{}^2\right )}dx\)

\(\Big \downarrow \) 7270

\(\displaystyle \frac {\sqrt {c_3 x^2+c_0 x+c_4} \int \frac {\left (x^2 c_3-c_4\right ) \sqrt {c_3 x^2+c_1 x+c_4} \left (3 c_3 x^2+x+3 c_4\right )}{x \sqrt {c_3 x^2+c_0 x+c_4} \left (c_3{}^2 x^4-(1-2 c_3 c_4) x^2+c_4{}^2\right )}dx}{\sqrt {\frac {c_3 x^2+c_0 x+c_4}{c_3 x^2+c_1 x+c_4}} \sqrt {c_3 x^2+c_1 x+c_4}}\)

\(\Big \downarrow \) 7279

\(\displaystyle \frac {\sqrt {c_3 x^2+c_0 x+c_4} \int \left (\frac {2 \sqrt {c_3 x^2+c_1 x+c_4} (2 x c_3-1)}{\left (c_3 x^2-x+c_4\right ) \sqrt {c_3 x^2+c_0 x+c_4}}-\frac {3 \sqrt {c_3 x^2+c_1 x+c_4}}{x \sqrt {c_3 x^2+c_0 x+c_4}}+\frac {(2 x c_3+1) \sqrt {c_3 x^2+c_1 x+c_4}}{\left (c_3 x^2+x+c_4\right ) \sqrt {c_3 x^2+c_0 x+c_4}}\right )dx}{\sqrt {\frac {c_3 x^2+c_0 x+c_4}{c_3 x^2+c_1 x+c_4}} \sqrt {c_3 x^2+c_1 x+c_4}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt {c_3 x^2+c_0 x+c_4} \left (-3 \int \frac {\sqrt {c_3 x^2+c_1 x+c_4}}{x \sqrt {c_3 x^2+c_0 x+c_4}}dx+4 c_3 \int \frac {\sqrt {c_3 x^2+c_1 x+c_4}}{\sqrt {c_3 x^2+c_0 x+c_4} \left (2 x c_3-\sqrt {1-4 c_3 c_4}-1\right )}dx+2 c_3 \int \frac {\sqrt {c_3 x^2+c_1 x+c_4}}{\sqrt {c_3 x^2+c_0 x+c_4} \left (2 x c_3-\sqrt {1-4 c_3 c_4}+1\right )}dx+4 c_3 \int \frac {\sqrt {c_3 x^2+c_1 x+c_4}}{\sqrt {c_3 x^2+c_0 x+c_4} \left (2 x c_3+\sqrt {1-4 c_3 c_4}-1\right )}dx+2 c_3 \int \frac {\sqrt {c_3 x^2+c_1 x+c_4}}{\sqrt {c_3 x^2+c_0 x+c_4} \left (2 x c_3+\sqrt {1-4 c_3 c_4}+1\right )}dx\right )}{\sqrt {\frac {c_3 x^2+c_0 x+c_4}{c_3 x^2+c_1 x+c_4}} \sqrt {c_3 x^2+c_1 x+c_4}}\)

input
Int[((x^2*C[3] - C[4])*(x + 3*x^2*C[3] + 3*C[4]))/(x*Sqrt[(x*C[0] + x^2*C[ 
3] + C[4])/(x*C[1] + x^2*C[3] + C[4])]*(-x^2 + x^4*C[3]^2 + 2*x^2*C[3]*C[4 
] + C[4]^2)),x]
 
output
$Aborted
 

3.25.20.3.1 Defintions of rubi rules used

rule 6
Int[(u_.)*((v_.) + (a_.)*(Fx_) + (b_.)*(Fx_))^(p_.), x_Symbol] :> Int[u*(v 
+ (a + b)*Fx)^p, x] /; FreeQ[{a, b}, x] &&  !FreeQ[Fx, x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7270
Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.))^(p_), x_Symbol] :> Simp[a^IntPart[p 
]*((a*v^m*w^n)^FracPart[p]/(v^(m*FracPart[p])*w^(n*FracPart[p])))   Int[u*v 
^(m*p)*w^(n*p), x], x] /; FreeQ[{a, m, n, p}, x] &&  !IntegerQ[p] &&  !Free 
Q[v, x] &&  !FreeQ[w, x]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
3.25.20.4 Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 14.98 (sec) , antiderivative size = 35837869, normalized size of antiderivative = 183783.94

method result size
default \(\text {Expression too large to display}\) \(35837869\)

input
int((_C3*x^2-_C4)*(3*_C3*x^2+3*_C4+x)/x/((_C3*x^2+_C0*x+_C4)/(_C3*x^2+_C1* 
x+_C4))^(1/2)/(_C3^2*x^4+2*_C3*_C4*x^2+_C4^2-x^2),x,method=_RETURNVERBOSE)
 
output
result too large to display
 
3.25.20.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\left (x^2 c_3-c_4\right ) \left (x+3 x^2 c_3+3 c_4\right )}{x \sqrt {\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}} \left (-x^2+x^4 c_3{}^2+2 x^2 c_3 c_4+c_4{}^2\right )} \, dx=\text {Timed out} \]

input
integrate((_C3*x^2-_C4)*(3*_C3*x^2+3*_C4+x)/x/((_C3*x^2+_C0*x+_C4)/(_C3*x^ 
2+_C1*x+_C4))^(1/2)/(_C3^2*x^4+2*_C3*_C4*x^2+_C4^2-x^2),x, algorithm="fric 
as")
 
output
Timed out
 
3.25.20.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\left (x^2 c_3-c_4\right ) \left (x+3 x^2 c_3+3 c_4\right )}{x \sqrt {\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}} \left (-x^2+x^4 c_3{}^2+2 x^2 c_3 c_4+c_4{}^2\right )} \, dx=\text {Timed out} \]

input
integrate((_C3*x**2-_C4)*(3*_C3*x**2+3*_C4+x)/x/((_C3*x**2+_C0*x+_C4)/(_C3 
*x**2+_C1*x+_C4))**(1/2)/(_C3**2*x**4+2*_C3*_C4*x**2+_C4**2-x**2),x)
 
output
Timed out
 
3.25.20.7 Maxima [F]

\[ \text {Unable to display latex} \]

input
integrate((_C3*x^2-_C4)*(3*_C3*x^2+3*_C4+x)/x/((_C3*x^2+_C0*x+_C4)/(_C3*x^ 
2+_C1*x+_C4))^(1/2)/(_C3^2*x^4+2*_C3*_C4*x^2+_C4^2-x^2),x, algorithm="maxi 
ma")
 
output
integrate((3*_C3*x^2 + 3*_C4 + x)*(_C3*x^2 - _C4)/((_C3^2*x^4 + 2*_C3*_C4* 
x^2 + _C4^2 - x^2)*x*sqrt((_C3*x^2 + _C0*x + _C4)/(_C3*x^2 + _C1*x + _C4)) 
), x)
 
3.25.20.8 Giac [F]

\[ \text {Unable to display latex} \]

input
integrate((_C3*x^2-_C4)*(3*_C3*x^2+3*_C4+x)/x/((_C3*x^2+_C0*x+_C4)/(_C3*x^ 
2+_C1*x+_C4))^(1/2)/(_C3^2*x^4+2*_C3*_C4*x^2+_C4^2-x^2),x, algorithm="giac 
")
 
output
integrate((3*_C3*x^2 + 3*_C4 + x)*(_C3*x^2 - _C4)/((_C3^2*x^4 + 2*_C3*_C4* 
x^2 + _C4^2 - x^2)*x*sqrt((_C3*x^2 + _C0*x + _C4)/(_C3*x^2 + _C1*x + _C4)) 
), x)
 
3.25.20.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (x^2 c_3-c_4\right ) \left (x+3 x^2 c_3+3 c_4\right )}{x \sqrt {\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}} \left (-x^2+x^4 c_3{}^2+2 x^2 c_3 c_4+c_4{}^2\right )} \, dx=\int -\frac {\left (_{\mathrm {C4}}-_{\mathrm {C3}}\,x^2\right )\,\left (3\,_{\mathrm {C3}}\,x^2+x+3\,_{\mathrm {C4}}\right )}{x\,\sqrt {\frac {_{\mathrm {C3}}\,x^2+_{\mathrm {C0}}\,x+_{\mathrm {C4}}}{_{\mathrm {C3}}\,x^2+_{\mathrm {C1}}\,x+_{\mathrm {C4}}}}\,\left ({_{\mathrm {C3}}}^2\,x^4+2\,_{\mathrm {C3}}\,_{\mathrm {C4}}\,x^2+{_{\mathrm {C4}}}^2-x^2\right )} \,d x \]

input
int(-((_C4 - _C3*x^2)*(3*_C4 + x + 3*_C3*x^2))/(x*((_C4 + _C0*x + _C3*x^2) 
/(_C4 + _C1*x + _C3*x^2))^(1/2)*(_C4^2 - x^2 + _C3^2*x^4 + 2*_C3*_C4*x^2)) 
,x)
 
output
int(-((_C4 - _C3*x^2)*(3*_C4 + x + 3*_C3*x^2))/(x*((_C4 + _C0*x + _C3*x^2) 
/(_C4 + _C1*x + _C3*x^2))^(1/2)*(_C4^2 - x^2 + _C3^2*x^4 + 2*_C3*_C4*x^2)) 
, x)