3.26.9 \(\int \frac {(1+x^3)^{2/3} (-1+2 x^6)}{x^6 (-1+2 x^3)} \, dx\) [2509]

3.26.9.1 Optimal result
3.26.9.2 Mathematica [A] (verified)
3.26.9.3 Rubi [A] (verified)
3.26.9.4 Maple [A] (verified)
3.26.9.5 Fricas [B] (verification not implemented)
3.26.9.6 Sympy [F]
3.26.9.7 Maxima [F]
3.26.9.8 Giac [F]
3.26.9.9 Mupad [F(-1)]

3.26.9.1 Optimal result

Integrand size = 29, antiderivative size = 209 \[ \int \frac {\left (1+x^3\right )^{2/3} \left (-1+2 x^6\right )}{x^6 \left (-1+2 x^3\right )} \, dx=\frac {\left (-1-6 x^3\right ) \left (1+x^3\right )^{2/3}}{5 x^5}+\frac {\arctan \left (\frac {\sqrt {3} x}{x+2 \sqrt [3]{1+x^3}}\right )}{\sqrt {3}}+\sqrt [6]{3} \arctan \left (\frac {3^{5/6} x}{\sqrt [3]{3} x+2 \sqrt [3]{1+x^3}}\right )-\frac {1}{3} \log \left (-x+\sqrt [3]{1+x^3}\right )-\frac {\log \left (-3 x+3^{2/3} \sqrt [3]{1+x^3}\right )}{\sqrt [3]{3}}+\frac {1}{6} \log \left (x^2+x \sqrt [3]{1+x^3}+\left (1+x^3\right )^{2/3}\right )+\frac {\log \left (3 x^2+3^{2/3} x \sqrt [3]{1+x^3}+\sqrt [3]{3} \left (1+x^3\right )^{2/3}\right )}{2 \sqrt [3]{3}} \]

output
1/5*(-6*x^3-1)*(x^3+1)^(2/3)/x^5+1/3*arctan(3^(1/2)*x/(x+2*(x^3+1)^(1/3))) 
*3^(1/2)+3^(1/6)*arctan(3^(5/6)*x/(3^(1/3)*x+2*(x^3+1)^(1/3)))-1/3*ln(-x+( 
x^3+1)^(1/3))-1/3*ln(-3*x+3^(2/3)*(x^3+1)^(1/3))*3^(2/3)+1/6*ln(x^2+x*(x^3 
+1)^(1/3)+(x^3+1)^(2/3))+1/6*ln(3*x^2+3^(2/3)*x*(x^3+1)^(1/3)+3^(1/3)*(x^3 
+1)^(2/3))*3^(2/3)
 
3.26.9.2 Mathematica [A] (verified)

Time = 0.39 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.00 \[ \int \frac {\left (1+x^3\right )^{2/3} \left (-1+2 x^6\right )}{x^6 \left (-1+2 x^3\right )} \, dx=\frac {\left (-1-6 x^3\right ) \left (1+x^3\right )^{2/3}}{5 x^5}+\frac {\arctan \left (\frac {\sqrt {3} x}{x+2 \sqrt [3]{1+x^3}}\right )}{\sqrt {3}}+\sqrt [6]{3} \arctan \left (\frac {3^{5/6} x}{\sqrt [3]{3} x+2 \sqrt [3]{1+x^3}}\right )-\frac {1}{3} \log \left (-x+\sqrt [3]{1+x^3}\right )-\frac {\log \left (-3 x+3^{2/3} \sqrt [3]{1+x^3}\right )}{\sqrt [3]{3}}+\frac {1}{6} \log \left (x^2+x \sqrt [3]{1+x^3}+\left (1+x^3\right )^{2/3}\right )+\frac {\log \left (3 x^2+3^{2/3} x \sqrt [3]{1+x^3}+\sqrt [3]{3} \left (1+x^3\right )^{2/3}\right )}{2 \sqrt [3]{3}} \]

input
Integrate[((1 + x^3)^(2/3)*(-1 + 2*x^6))/(x^6*(-1 + 2*x^3)),x]
 
output
((-1 - 6*x^3)*(1 + x^3)^(2/3))/(5*x^5) + ArcTan[(Sqrt[3]*x)/(x + 2*(1 + x^ 
3)^(1/3))]/Sqrt[3] + 3^(1/6)*ArcTan[(3^(5/6)*x)/(3^(1/3)*x + 2*(1 + x^3)^( 
1/3))] - Log[-x + (1 + x^3)^(1/3)]/3 - Log[-3*x + 3^(2/3)*(1 + x^3)^(1/3)] 
/3^(1/3) + Log[x^2 + x*(1 + x^3)^(1/3) + (1 + x^3)^(2/3)]/6 + Log[3*x^2 + 
3^(2/3)*x*(1 + x^3)^(1/3) + 3^(1/3)*(1 + x^3)^(2/3)]/(2*3^(1/3))
 
3.26.9.3 Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 154, normalized size of antiderivative = 0.74, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^3+1\right )^{2/3} \left (2 x^6-1\right )}{x^6 \left (2 x^3-1\right )} \, dx\)

\(\Big \downarrow \) 7276

\(\displaystyle \int \left (-\frac {2 \left (x^3+1\right )^{2/3}}{2 x^3-1}+\frac {2 \left (x^3+1\right )^{2/3}}{x^3}+\frac {\left (x^3+1\right )^{2/3}}{x^6}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\arctan \left (\frac {\frac {2 x}{\sqrt [3]{x^3+1}}+1}{\sqrt {3}}\right )}{\sqrt {3}}+\sqrt [6]{3} \arctan \left (\frac {\frac {2 \sqrt [3]{3} x}{\sqrt [3]{x^3+1}}+1}{\sqrt {3}}\right )+\frac {\log \left (2 x^3-1\right )}{2 \sqrt [3]{3}}-\frac {1}{2} 3^{2/3} \log \left (\sqrt [3]{3} x-\sqrt [3]{x^3+1}\right )-\frac {1}{2} \log \left (\sqrt [3]{x^3+1}-x\right )-\frac {\left (x^3+1\right )^{5/3}}{5 x^5}-\frac {\left (x^3+1\right )^{2/3}}{x^2}\)

input
Int[((1 + x^3)^(2/3)*(-1 + 2*x^6))/(x^6*(-1 + 2*x^3)),x]
 
output
-((1 + x^3)^(2/3)/x^2) - (1 + x^3)^(5/3)/(5*x^5) + ArcTan[(1 + (2*x)/(1 + 
x^3)^(1/3))/Sqrt[3]]/Sqrt[3] + 3^(1/6)*ArcTan[(1 + (2*3^(1/3)*x)/(1 + x^3) 
^(1/3))/Sqrt[3]] + Log[-1 + 2*x^3]/(2*3^(1/3)) - (3^(2/3)*Log[3^(1/3)*x - 
(1 + x^3)^(1/3)])/2 - Log[-x + (1 + x^3)^(1/3)]/2
 

3.26.9.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.26.9.4 Maple [A] (verified)

Time = 1.77 (sec) , antiderivative size = 207, normalized size of antiderivative = 0.99

method result size
pseudoelliptic \(\frac {-10 \,3^{\frac {2}{3}} \ln \left (\frac {-3^{\frac {1}{3}} x +\left (x^{3}+1\right )^{\frac {1}{3}}}{x}\right ) x^{5}+5 \,3^{\frac {2}{3}} \ln \left (\frac {3^{\frac {2}{3}} x^{2}+3^{\frac {1}{3}} \left (x^{3}+1\right )^{\frac {1}{3}} x +\left (x^{3}+1\right )^{\frac {2}{3}}}{x^{2}}\right ) x^{5}-10 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (x +2 \left (x^{3}+1\right )^{\frac {1}{3}}\right )}{3 x}\right ) x^{5}-30 \,3^{\frac {1}{6}} \arctan \left (\frac {\sqrt {3}\, \left (2 \,3^{\frac {2}{3}} \left (x^{3}+1\right )^{\frac {1}{3}}+3 x \right )}{9 x}\right ) x^{5}-10 \ln \left (\frac {-x +\left (x^{3}+1\right )^{\frac {1}{3}}}{x}\right ) x^{5}+5 \ln \left (\frac {x^{2}+x \left (x^{3}+1\right )^{\frac {1}{3}}+\left (x^{3}+1\right )^{\frac {2}{3}}}{x^{2}}\right ) x^{5}-36 x^{3} \left (x^{3}+1\right )^{\frac {2}{3}}-6 \left (x^{3}+1\right )^{\frac {2}{3}}}{30 x^{5}}\) \(207\)

input
int((x^3+1)^(2/3)*(2*x^6-1)/x^6/(2*x^3-1),x,method=_RETURNVERBOSE)
 
output
1/30*(-10*3^(2/3)*ln((-3^(1/3)*x+(x^3+1)^(1/3))/x)*x^5+5*3^(2/3)*ln((3^(2/ 
3)*x^2+3^(1/3)*(x^3+1)^(1/3)*x+(x^3+1)^(2/3))/x^2)*x^5-10*3^(1/2)*arctan(1 
/3*3^(1/2)/x*(x+2*(x^3+1)^(1/3)))*x^5-30*3^(1/6)*arctan(1/9*3^(1/2)*(2*3^( 
2/3)*(x^3+1)^(1/3)+3*x)/x)*x^5-10*ln((-x+(x^3+1)^(1/3))/x)*x^5+5*ln((x^2+x 
*(x^3+1)^(1/3)+(x^3+1)^(2/3))/x^2)*x^5-36*x^3*(x^3+1)^(2/3)-6*(x^3+1)^(2/3 
))/x^5
 
3.26.9.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 382 vs. \(2 (164) = 328\).

Time = 18.43 (sec) , antiderivative size = 382, normalized size of antiderivative = 1.83 \[ \int \frac {\left (1+x^3\right )^{2/3} \left (-1+2 x^6\right )}{x^6 \left (-1+2 x^3\right )} \, dx=\frac {10 \cdot 3^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} x^{5} \log \left (\frac {9 \cdot 3^{\frac {1}{3}} \left (-1\right )^{\frac {2}{3}} {\left (x^{3} + 1\right )}^{\frac {1}{3}} x^{2} + 3^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} {\left (2 \, x^{3} - 1\right )} - 9 \, {\left (x^{3} + 1\right )}^{\frac {2}{3}} x}{2 \, x^{3} - 1}\right ) - 5 \cdot 3^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} x^{5} \log \left (-\frac {3 \cdot 3^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} {\left (7 \, x^{4} + x\right )} {\left (x^{3} + 1\right )}^{\frac {2}{3}} - 3^{\frac {1}{3}} \left (-1\right )^{\frac {2}{3}} {\left (31 \, x^{6} + 23 \, x^{3} + 1\right )} - 9 \, {\left (5 \, x^{5} + 2 \, x^{2}\right )} {\left (x^{3} + 1\right )}^{\frac {1}{3}}}{4 \, x^{6} - 4 \, x^{3} + 1}\right ) - 30 \cdot 3^{\frac {1}{6}} \left (-1\right )^{\frac {1}{3}} x^{5} \arctan \left (\frac {3^{\frac {1}{6}} {\left (6 \cdot 3^{\frac {2}{3}} \left (-1\right )^{\frac {2}{3}} {\left (14 \, x^{7} - 5 \, x^{4} - x\right )} {\left (x^{3} + 1\right )}^{\frac {2}{3}} + 18 \, \left (-1\right )^{\frac {1}{3}} {\left (31 \, x^{8} + 23 \, x^{5} + x^{2}\right )} {\left (x^{3} + 1\right )}^{\frac {1}{3}} - 3^{\frac {1}{3}} {\left (127 \, x^{9} + 201 \, x^{6} + 48 \, x^{3} + 1\right )}\right )}}{3 \, {\left (251 \, x^{9} + 231 \, x^{6} + 6 \, x^{3} - 1\right )}}\right ) + 30 \, \sqrt {3} x^{5} \arctan \left (-\frac {25382 \, \sqrt {3} {\left (x^{3} + 1\right )}^{\frac {1}{3}} x^{2} - 13720 \, \sqrt {3} {\left (x^{3} + 1\right )}^{\frac {2}{3}} x + \sqrt {3} {\left (5831 \, x^{3} + 7200\right )}}{58653 \, x^{3} + 8000}\right ) - 15 \, x^{5} \log \left (3 \, {\left (x^{3} + 1\right )}^{\frac {1}{3}} x^{2} - 3 \, {\left (x^{3} + 1\right )}^{\frac {2}{3}} x + 1\right ) - 18 \, {\left (6 \, x^{3} + 1\right )} {\left (x^{3} + 1\right )}^{\frac {2}{3}}}{90 \, x^{5}} \]

input
integrate((x^3+1)^(2/3)*(2*x^6-1)/x^6/(2*x^3-1),x, algorithm="fricas")
 
output
1/90*(10*3^(2/3)*(-1)^(1/3)*x^5*log((9*3^(1/3)*(-1)^(2/3)*(x^3 + 1)^(1/3)* 
x^2 + 3^(2/3)*(-1)^(1/3)*(2*x^3 - 1) - 9*(x^3 + 1)^(2/3)*x)/(2*x^3 - 1)) - 
 5*3^(2/3)*(-1)^(1/3)*x^5*log(-(3*3^(2/3)*(-1)^(1/3)*(7*x^4 + x)*(x^3 + 1) 
^(2/3) - 3^(1/3)*(-1)^(2/3)*(31*x^6 + 23*x^3 + 1) - 9*(5*x^5 + 2*x^2)*(x^3 
 + 1)^(1/3))/(4*x^6 - 4*x^3 + 1)) - 30*3^(1/6)*(-1)^(1/3)*x^5*arctan(1/3*3 
^(1/6)*(6*3^(2/3)*(-1)^(2/3)*(14*x^7 - 5*x^4 - x)*(x^3 + 1)^(2/3) + 18*(-1 
)^(1/3)*(31*x^8 + 23*x^5 + x^2)*(x^3 + 1)^(1/3) - 3^(1/3)*(127*x^9 + 201*x 
^6 + 48*x^3 + 1))/(251*x^9 + 231*x^6 + 6*x^3 - 1)) + 30*sqrt(3)*x^5*arctan 
(-(25382*sqrt(3)*(x^3 + 1)^(1/3)*x^2 - 13720*sqrt(3)*(x^3 + 1)^(2/3)*x + s 
qrt(3)*(5831*x^3 + 7200))/(58653*x^3 + 8000)) - 15*x^5*log(3*(x^3 + 1)^(1/ 
3)*x^2 - 3*(x^3 + 1)^(2/3)*x + 1) - 18*(6*x^3 + 1)*(x^3 + 1)^(2/3))/x^5
 
3.26.9.6 Sympy [F]

\[ \int \frac {\left (1+x^3\right )^{2/3} \left (-1+2 x^6\right )}{x^6 \left (-1+2 x^3\right )} \, dx=\int \frac {\left (\left (x + 1\right ) \left (x^{2} - x + 1\right )\right )^{\frac {2}{3}} \cdot \left (2 x^{6} - 1\right )}{x^{6} \cdot \left (2 x^{3} - 1\right )}\, dx \]

input
integrate((x**3+1)**(2/3)*(2*x**6-1)/x**6/(2*x**3-1),x)
 
output
Integral(((x + 1)*(x**2 - x + 1))**(2/3)*(2*x**6 - 1)/(x**6*(2*x**3 - 1)), 
 x)
 
3.26.9.7 Maxima [F]

\[ \int \frac {\left (1+x^3\right )^{2/3} \left (-1+2 x^6\right )}{x^6 \left (-1+2 x^3\right )} \, dx=\int { \frac {{\left (2 \, x^{6} - 1\right )} {\left (x^{3} + 1\right )}^{\frac {2}{3}}}{{\left (2 \, x^{3} - 1\right )} x^{6}} \,d x } \]

input
integrate((x^3+1)^(2/3)*(2*x^6-1)/x^6/(2*x^3-1),x, algorithm="maxima")
 
output
integrate((2*x^6 - 1)*(x^3 + 1)^(2/3)/((2*x^3 - 1)*x^6), x)
 
3.26.9.8 Giac [F]

\[ \int \frac {\left (1+x^3\right )^{2/3} \left (-1+2 x^6\right )}{x^6 \left (-1+2 x^3\right )} \, dx=\int { \frac {{\left (2 \, x^{6} - 1\right )} {\left (x^{3} + 1\right )}^{\frac {2}{3}}}{{\left (2 \, x^{3} - 1\right )} x^{6}} \,d x } \]

input
integrate((x^3+1)^(2/3)*(2*x^6-1)/x^6/(2*x^3-1),x, algorithm="giac")
 
output
integrate((2*x^6 - 1)*(x^3 + 1)^(2/3)/((2*x^3 - 1)*x^6), x)
 
3.26.9.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (1+x^3\right )^{2/3} \left (-1+2 x^6\right )}{x^6 \left (-1+2 x^3\right )} \, dx=\int \frac {{\left (x^3+1\right )}^{2/3}\,\left (2\,x^6-1\right )}{x^6\,\left (2\,x^3-1\right )} \,d x \]

input
int(((x^3 + 1)^(2/3)*(2*x^6 - 1))/(x^6*(2*x^3 - 1)),x)
 
output
int(((x^3 + 1)^(2/3)*(2*x^6 - 1))/(x^6*(2*x^3 - 1)), x)