3.26.21 \(\int \frac {b-2 c x^4+2 a x^8}{\sqrt [4]{-b+a x^4} (-2 b-c x^4+2 a x^8)} \, dx\) [2521]

3.26.21.1 Optimal result
3.26.21.2 Mathematica [A] (verified)
3.26.21.3 Rubi [B] (verified)
3.26.21.4 Maple [N/A] (verified)
3.26.21.5 Fricas [C] (verification not implemented)
3.26.21.6 Sympy [F(-1)]
3.26.21.7 Maxima [N/A]
3.26.21.8 Giac [N/A]
3.26.21.9 Mupad [N/A]

3.26.21.1 Optimal result

Integrand size = 46, antiderivative size = 210 \[ \int \frac {b-2 c x^4+2 a x^8}{\sqrt [4]{-b+a x^4} \left (-2 b-c x^4+2 a x^8\right )} \, dx=\frac {\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{-b+a x^4}}\right )}{2 \sqrt [4]{a}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{-b+a x^4}}\right )}{2 \sqrt [4]{a}}+\frac {1}{4} \text {RootSum}\left [2 a^2-2 a b+a c-4 a \text {$\#$1}^4-c \text {$\#$1}^4+2 \text {$\#$1}^8\&,\frac {-3 a \log (x)+c \log (x)+3 a \log \left (\sqrt [4]{-b+a x^4}-x \text {$\#$1}\right )-c \log \left (\sqrt [4]{-b+a x^4}-x \text {$\#$1}\right )+3 \log (x) \text {$\#$1}^4-3 \log \left (\sqrt [4]{-b+a x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4}{4 a \text {$\#$1}+c \text {$\#$1}-4 \text {$\#$1}^5}\&\right ] \]

output
Unintegrable
 
3.26.21.2 Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 201, normalized size of antiderivative = 0.96 \[ \int \frac {b-2 c x^4+2 a x^8}{\sqrt [4]{-b+a x^4} \left (-2 b-c x^4+2 a x^8\right )} \, dx=\frac {1}{4} \left (\frac {2 \left (\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{-b+a x^4}}\right )+\text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{-b+a x^4}}\right )\right )}{\sqrt [4]{a}}+\text {RootSum}\left [2 a^2-2 a b+a c-4 a \text {$\#$1}^4-c \text {$\#$1}^4+2 \text {$\#$1}^8\&,\frac {3 a \log (x)-c \log (x)-3 a \log \left (\sqrt [4]{-b+a x^4}-x \text {$\#$1}\right )+c \log \left (\sqrt [4]{-b+a x^4}-x \text {$\#$1}\right )-3 \log (x) \text {$\#$1}^4+3 \log \left (\sqrt [4]{-b+a x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4}{-4 a \text {$\#$1}-c \text {$\#$1}+4 \text {$\#$1}^5}\&\right ]\right ) \]

input
Integrate[(b - 2*c*x^4 + 2*a*x^8)/((-b + a*x^4)^(1/4)*(-2*b - c*x^4 + 2*a* 
x^8)),x]
 
output
((2*(ArcTan[(a^(1/4)*x)/(-b + a*x^4)^(1/4)] + ArcTanh[(a^(1/4)*x)/(-b + a* 
x^4)^(1/4)]))/a^(1/4) + RootSum[2*a^2 - 2*a*b + a*c - 4*a*#1^4 - c*#1^4 + 
2*#1^8 & , (3*a*Log[x] - c*Log[x] - 3*a*Log[(-b + a*x^4)^(1/4) - x*#1] + c 
*Log[(-b + a*x^4)^(1/4) - x*#1] - 3*Log[x]*#1^4 + 3*Log[(-b + a*x^4)^(1/4) 
 - x*#1]*#1^4)/(-4*a*#1 - c*#1 + 4*#1^5) & ])/4
 
3.26.21.3 Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(611\) vs. \(2(210)=420\).

Time = 1.68 (sec) , antiderivative size = 611, normalized size of antiderivative = 2.91, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {2 a x^8+b-2 c x^4}{\sqrt [4]{a x^4-b} \left (2 a x^8-2 b-c x^4\right )} \, dx\)

\(\Big \downarrow \) 7279

\(\displaystyle \int \left (\frac {3 b-c x^4}{\sqrt [4]{a x^4-b} \left (2 a x^8-2 b-c x^4\right )}+\frac {1}{\sqrt [4]{a x^4-b}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\left (\frac {12 a b-c^2}{\sqrt {16 a b+c^2}}+c\right ) \arctan \left (\frac {\sqrt [4]{a} x \sqrt [4]{\sqrt {16 a b+c^2}+4 b-c}}{\sqrt [4]{\sqrt {16 a b+c^2}-c} \sqrt [4]{a x^4-b}}\right )}{2 \sqrt [4]{a} \left (\sqrt {16 a b+c^2}-c\right )^{3/4} \sqrt [4]{\sqrt {16 a b+c^2}+4 b-c}}+\frac {\left (c-\frac {12 a b-c^2}{\sqrt {16 a b+c^2}}\right ) \arctan \left (\frac {\sqrt [4]{a} x \sqrt [4]{\sqrt {16 a b+c^2}-4 b+c}}{\sqrt [4]{\sqrt {16 a b+c^2}+c} \sqrt [4]{a x^4-b}}\right )}{2 \sqrt [4]{a} \left (\sqrt {16 a b+c^2}+c\right )^{3/4} \sqrt [4]{\sqrt {16 a b+c^2}-4 b+c}}+\frac {\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4-b}}\right )}{2 \sqrt [4]{a}}-\frac {\left (\frac {12 a b-c^2}{\sqrt {16 a b+c^2}}+c\right ) \text {arctanh}\left (\frac {\sqrt [4]{a} x \sqrt [4]{\sqrt {16 a b+c^2}+4 b-c}}{\sqrt [4]{\sqrt {16 a b+c^2}-c} \sqrt [4]{a x^4-b}}\right )}{2 \sqrt [4]{a} \left (\sqrt {16 a b+c^2}-c\right )^{3/4} \sqrt [4]{\sqrt {16 a b+c^2}+4 b-c}}+\frac {\left (c-\frac {12 a b-c^2}{\sqrt {16 a b+c^2}}\right ) \text {arctanh}\left (\frac {\sqrt [4]{a} x \sqrt [4]{\sqrt {16 a b+c^2}-4 b+c}}{\sqrt [4]{\sqrt {16 a b+c^2}+c} \sqrt [4]{a x^4-b}}\right )}{2 \sqrt [4]{a} \left (\sqrt {16 a b+c^2}+c\right )^{3/4} \sqrt [4]{\sqrt {16 a b+c^2}-4 b+c}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4-b}}\right )}{2 \sqrt [4]{a}}\)

input
Int[(b - 2*c*x^4 + 2*a*x^8)/((-b + a*x^4)^(1/4)*(-2*b - c*x^4 + 2*a*x^8)), 
x]
 
output
ArcTan[(a^(1/4)*x)/(-b + a*x^4)^(1/4)]/(2*a^(1/4)) - ((c + (12*a*b - c^2)/ 
Sqrt[16*a*b + c^2])*ArcTan[(a^(1/4)*(4*b - c + Sqrt[16*a*b + c^2])^(1/4)*x 
)/((-c + Sqrt[16*a*b + c^2])^(1/4)*(-b + a*x^4)^(1/4))])/(2*a^(1/4)*(-c + 
Sqrt[16*a*b + c^2])^(3/4)*(4*b - c + Sqrt[16*a*b + c^2])^(1/4)) + ((c - (1 
2*a*b - c^2)/Sqrt[16*a*b + c^2])*ArcTan[(a^(1/4)*(-4*b + c + Sqrt[16*a*b + 
 c^2])^(1/4)*x)/((c + Sqrt[16*a*b + c^2])^(1/4)*(-b + a*x^4)^(1/4))])/(2*a 
^(1/4)*(c + Sqrt[16*a*b + c^2])^(3/4)*(-4*b + c + Sqrt[16*a*b + c^2])^(1/4 
)) + ArcTanh[(a^(1/4)*x)/(-b + a*x^4)^(1/4)]/(2*a^(1/4)) - ((c + (12*a*b - 
 c^2)/Sqrt[16*a*b + c^2])*ArcTanh[(a^(1/4)*(4*b - c + Sqrt[16*a*b + c^2])^ 
(1/4)*x)/((-c + Sqrt[16*a*b + c^2])^(1/4)*(-b + a*x^4)^(1/4))])/(2*a^(1/4) 
*(-c + Sqrt[16*a*b + c^2])^(3/4)*(4*b - c + Sqrt[16*a*b + c^2])^(1/4)) + ( 
(c - (12*a*b - c^2)/Sqrt[16*a*b + c^2])*ArcTanh[(a^(1/4)*(-4*b + c + Sqrt[ 
16*a*b + c^2])^(1/4)*x)/((c + Sqrt[16*a*b + c^2])^(1/4)*(-b + a*x^4)^(1/4) 
)])/(2*a^(1/4)*(c + Sqrt[16*a*b + c^2])^(3/4)*(-4*b + c + Sqrt[16*a*b + c^ 
2])^(1/4))
 

3.26.21.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
3.26.21.4 Maple [N/A] (verified)

Time = 0.14 (sec) , antiderivative size = 157, normalized size of antiderivative = 0.75

method result size
pseudoelliptic \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (2 \textit {\_Z}^{8}+\left (-4 a -c \right ) \textit {\_Z}^{4}+2 a^{2}-2 a b +a c \right )}{\sum }\frac {\left (3 \textit {\_R}^{4}-3 a +c \right ) \ln \left (\frac {-\textit {\_R} x +\left (a \,x^{4}-b \right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R} \left (4 \textit {\_R}^{4}-4 a -c \right )}\right ) a^{\frac {1}{4}}-2 \arctan \left (\frac {\left (a \,x^{4}-b \right )^{\frac {1}{4}}}{a^{\frac {1}{4}} x}\right )+\ln \left (\frac {-x \,a^{\frac {1}{4}}-\left (a \,x^{4}-b \right )^{\frac {1}{4}}}{x \,a^{\frac {1}{4}}-\left (a \,x^{4}-b \right )^{\frac {1}{4}}}\right )}{4 a^{\frac {1}{4}}}\) \(157\)

input
int((2*a*x^8-2*c*x^4+b)/(a*x^4-b)^(1/4)/(2*a*x^8-c*x^4-2*b),x,method=_RETU 
RNVERBOSE)
 
output
1/4*(sum(1/_R*(3*_R^4-3*a+c)*ln((-_R*x+(a*x^4-b)^(1/4))/x)/(4*_R^4-4*a-c), 
_R=RootOf(2*_Z^8+(-4*a-c)*_Z^4+2*a^2-2*a*b+a*c))*a^(1/4)-2*arctan(1/a^(1/4 
)/x*(a*x^4-b)^(1/4))+ln((-x*a^(1/4)-(a*x^4-b)^(1/4))/(x*a^(1/4)-(a*x^4-b)^ 
(1/4))))/a^(1/4)
 
3.26.21.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 6.91 (sec) , antiderivative size = 16424, normalized size of antiderivative = 78.21 \[ \int \frac {b-2 c x^4+2 a x^8}{\sqrt [4]{-b+a x^4} \left (-2 b-c x^4+2 a x^8\right )} \, dx=\text {Too large to display} \]

input
integrate((2*a*x^8-2*c*x^4+b)/(a*x^4-b)^(1/4)/(2*a*x^8-c*x^4-2*b),x, algor 
ithm="fricas")
 
output
Too large to include
 
3.26.21.6 Sympy [F(-1)]

Timed out. \[ \int \frac {b-2 c x^4+2 a x^8}{\sqrt [4]{-b+a x^4} \left (-2 b-c x^4+2 a x^8\right )} \, dx=\text {Timed out} \]

input
integrate((2*a*x**8-2*c*x**4+b)/(a*x**4-b)**(1/4)/(2*a*x**8-c*x**4-2*b),x)
 
output
Timed out
 
3.26.21.7 Maxima [N/A]

Not integrable

Time = 0.21 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.22 \[ \int \frac {b-2 c x^4+2 a x^8}{\sqrt [4]{-b+a x^4} \left (-2 b-c x^4+2 a x^8\right )} \, dx=\int { \frac {2 \, a x^{8} - 2 \, c x^{4} + b}{{\left (2 \, a x^{8} - c x^{4} - 2 \, b\right )} {\left (a x^{4} - b\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate((2*a*x^8-2*c*x^4+b)/(a*x^4-b)^(1/4)/(2*a*x^8-c*x^4-2*b),x, algor 
ithm="maxima")
 
output
integrate((2*a*x^8 - 2*c*x^4 + b)/((2*a*x^8 - c*x^4 - 2*b)*(a*x^4 - b)^(1/ 
4)), x)
 
3.26.21.8 Giac [N/A]

Not integrable

Time = 1.75 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.22 \[ \int \frac {b-2 c x^4+2 a x^8}{\sqrt [4]{-b+a x^4} \left (-2 b-c x^4+2 a x^8\right )} \, dx=\int { \frac {2 \, a x^{8} - 2 \, c x^{4} + b}{{\left (2 \, a x^{8} - c x^{4} - 2 \, b\right )} {\left (a x^{4} - b\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate((2*a*x^8-2*c*x^4+b)/(a*x^4-b)^(1/4)/(2*a*x^8-c*x^4-2*b),x, algor 
ithm="giac")
 
output
integrate((2*a*x^8 - 2*c*x^4 + b)/((2*a*x^8 - c*x^4 - 2*b)*(a*x^4 - b)^(1/ 
4)), x)
 
3.26.21.9 Mupad [N/A]

Not integrable

Time = 0.00 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.22 \[ \int \frac {b-2 c x^4+2 a x^8}{\sqrt [4]{-b+a x^4} \left (-2 b-c x^4+2 a x^8\right )} \, dx=\int -\frac {2\,a\,x^8-2\,c\,x^4+b}{{\left (a\,x^4-b\right )}^{1/4}\,\left (-2\,a\,x^8+c\,x^4+2\,b\right )} \,d x \]

input
int(-(b + 2*a*x^8 - 2*c*x^4)/((a*x^4 - b)^(1/4)*(2*b - 2*a*x^8 + c*x^4)),x 
)
 
output
int(-(b + 2*a*x^8 - 2*c*x^4)/((a*x^4 - b)^(1/4)*(2*b - 2*a*x^8 + c*x^4)), 
x)