3.26.65 \(\int \frac {-1+2 x^4+2 x^8}{\sqrt [4]{1+x^4} (-1+x^4+x^8)} \, dx\) [2565]

3.26.65.1 Optimal result
3.26.65.2 Mathematica [A] (verified)
3.26.65.3 Rubi [A] (verified)
3.26.65.4 Maple [A] (verified)
3.26.65.5 Fricas [B] (verification not implemented)
3.26.65.6 Sympy [F(-1)]
3.26.65.7 Maxima [F]
3.26.65.8 Giac [F]
3.26.65.9 Mupad [F(-1)]

3.26.65.1 Optimal result

Integrand size = 32, antiderivative size = 217 \[ \int \frac {-1+2 x^4+2 x^8}{\sqrt [4]{1+x^4} \left (-1+x^4+x^8\right )} \, dx=\arctan \left (\frac {x}{\sqrt [4]{1+x^4}}\right )-\frac {1}{2} \sqrt {\frac {1}{10} \left (-1+\sqrt {5}\right )} \arctan \left (\frac {\sqrt {-\frac {1}{2}+\frac {\sqrt {5}}{2}} x}{\sqrt [4]{1+x^4}}\right )-\frac {1}{2} \sqrt {\frac {1}{10} \left (1+\sqrt {5}\right )} \arctan \left (\frac {\sqrt {\frac {1}{2}+\frac {\sqrt {5}}{2}} x}{\sqrt [4]{1+x^4}}\right )+\text {arctanh}\left (\frac {x}{\sqrt [4]{1+x^4}}\right )-\frac {1}{2} \sqrt {\frac {1}{10} \left (-1+\sqrt {5}\right )} \text {arctanh}\left (\frac {\sqrt {-\frac {1}{2}+\frac {\sqrt {5}}{2}} x}{\sqrt [4]{1+x^4}}\right )-\frac {1}{2} \sqrt {\frac {1}{10} \left (1+\sqrt {5}\right )} \text {arctanh}\left (\frac {\sqrt {\frac {1}{2}+\frac {\sqrt {5}}{2}} x}{\sqrt [4]{1+x^4}}\right ) \]

output
arctan(x/(x^4+1)^(1/4))-1/20*(-10+10*5^(1/2))^(1/2)*arctan(1/2*(-2+2*5^(1/ 
2))^(1/2)*x/(x^4+1)^(1/4))-1/20*(10+10*5^(1/2))^(1/2)*arctan(1/2*(2+2*5^(1 
/2))^(1/2)*x/(x^4+1)^(1/4))+arctanh(x/(x^4+1)^(1/4))-1/20*(-10+10*5^(1/2)) 
^(1/2)*arctanh(1/2*(-2+2*5^(1/2))^(1/2)*x/(x^4+1)^(1/4))-1/20*(10+10*5^(1/ 
2))^(1/2)*arctanh(1/2*(2+2*5^(1/2))^(1/2)*x/(x^4+1)^(1/4))
 
3.26.65.2 Mathematica [A] (verified)

Time = 0.53 (sec) , antiderivative size = 201, normalized size of antiderivative = 0.93 \[ \int \frac {-1+2 x^4+2 x^8}{\sqrt [4]{1+x^4} \left (-1+x^4+x^8\right )} \, dx=\frac {1}{20} \left (20 \arctan \left (\frac {x}{\sqrt [4]{1+x^4}}\right )-\sqrt {10 \left (-1+\sqrt {5}\right )} \arctan \left (\frac {\sqrt {\frac {1}{2} \left (-1+\sqrt {5}\right )} x}{\sqrt [4]{1+x^4}}\right )-\sqrt {10 \left (1+\sqrt {5}\right )} \arctan \left (\frac {\sqrt {\frac {1}{2} \left (1+\sqrt {5}\right )} x}{\sqrt [4]{1+x^4}}\right )+20 \text {arctanh}\left (\frac {x}{\sqrt [4]{1+x^4}}\right )-\sqrt {10 \left (-1+\sqrt {5}\right )} \text {arctanh}\left (\frac {\sqrt {\frac {1}{2} \left (-1+\sqrt {5}\right )} x}{\sqrt [4]{1+x^4}}\right )-\sqrt {10 \left (1+\sqrt {5}\right )} \text {arctanh}\left (\frac {\sqrt {\frac {1}{2} \left (1+\sqrt {5}\right )} x}{\sqrt [4]{1+x^4}}\right )\right ) \]

input
Integrate[(-1 + 2*x^4 + 2*x^8)/((1 + x^4)^(1/4)*(-1 + x^4 + x^8)),x]
 
output
(20*ArcTan[x/(1 + x^4)^(1/4)] - Sqrt[10*(-1 + Sqrt[5])]*ArcTan[(Sqrt[(-1 + 
 Sqrt[5])/2]*x)/(1 + x^4)^(1/4)] - Sqrt[10*(1 + Sqrt[5])]*ArcTan[(Sqrt[(1 
+ Sqrt[5])/2]*x)/(1 + x^4)^(1/4)] + 20*ArcTanh[x/(1 + x^4)^(1/4)] - Sqrt[1 
0*(-1 + Sqrt[5])]*ArcTanh[(Sqrt[(-1 + Sqrt[5])/2]*x)/(1 + x^4)^(1/4)] - Sq 
rt[10*(1 + Sqrt[5])]*ArcTanh[(Sqrt[(1 + Sqrt[5])/2]*x)/(1 + x^4)^(1/4)])/2 
0
 
3.26.65.3 Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 233, normalized size of antiderivative = 1.07, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {2 x^8+2 x^4-1}{\sqrt [4]{x^4+1} \left (x^8+x^4-1\right )} \, dx\)

\(\Big \downarrow \) 7279

\(\displaystyle \int \left (\frac {2}{\sqrt [4]{x^4+1}}+\frac {1}{\left (x^8+x^4-1\right ) \sqrt [4]{x^4+1}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \arctan \left (\frac {x}{\sqrt [4]{x^4+1}}\right )-\frac {\sqrt [4]{\frac {1}{2} \left (3-\sqrt {5}\right )} \arctan \left (\frac {\sqrt [4]{\frac {2}{3+\sqrt {5}}} x}{\sqrt [4]{x^4+1}}\right )}{2 \sqrt {5}}-\frac {\sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} \arctan \left (\frac {\sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} x}{\sqrt [4]{x^4+1}}\right )}{2 \sqrt {5}}+\text {arctanh}\left (\frac {x}{\sqrt [4]{x^4+1}}\right )-\frac {\sqrt [4]{\frac {1}{2} \left (3-\sqrt {5}\right )} \text {arctanh}\left (\frac {\sqrt [4]{\frac {2}{3+\sqrt {5}}} x}{\sqrt [4]{x^4+1}}\right )}{2 \sqrt {5}}-\frac {\sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} \text {arctanh}\left (\frac {\sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} x}{\sqrt [4]{x^4+1}}\right )}{2 \sqrt {5}}\)

input
Int[(-1 + 2*x^4 + 2*x^8)/((1 + x^4)^(1/4)*(-1 + x^4 + x^8)),x]
 
output
ArcTan[x/(1 + x^4)^(1/4)] - (((3 - Sqrt[5])/2)^(1/4)*ArcTan[((2/(3 + Sqrt[ 
5]))^(1/4)*x)/(1 + x^4)^(1/4)])/(2*Sqrt[5]) - (((3 + Sqrt[5])/2)^(1/4)*Arc 
Tan[(((3 + Sqrt[5])/2)^(1/4)*x)/(1 + x^4)^(1/4)])/(2*Sqrt[5]) + ArcTanh[x/ 
(1 + x^4)^(1/4)] - (((3 - Sqrt[5])/2)^(1/4)*ArcTanh[((2/(3 + Sqrt[5]))^(1/ 
4)*x)/(1 + x^4)^(1/4)])/(2*Sqrt[5]) - (((3 + Sqrt[5])/2)^(1/4)*ArcTanh[((( 
3 + Sqrt[5])/2)^(1/4)*x)/(1 + x^4)^(1/4)])/(2*Sqrt[5])
 

3.26.65.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
3.26.65.4 Maple [A] (verified)

Time = 2.72 (sec) , antiderivative size = 202, normalized size of antiderivative = 0.93

method result size
pseudoelliptic \(\frac {\sqrt {2+2 \sqrt {5}}\, \left (-5+\sqrt {5}\right ) \operatorname {arctanh}\left (\frac {2 \left (x^{4}+1\right )^{\frac {1}{4}}}{\sqrt {-2+2 \sqrt {5}}\, x}\right )}{40}-\frac {\sqrt {-2+2 \sqrt {5}}\, \left (5+\sqrt {5}\right ) \operatorname {arctanh}\left (\frac {2 \left (x^{4}+1\right )^{\frac {1}{4}}}{\sqrt {2+2 \sqrt {5}}\, x}\right )}{40}-\frac {\sqrt {2+2 \sqrt {5}}\, \left (-5+\sqrt {5}\right ) \arctan \left (\frac {2 \left (x^{4}+1\right )^{\frac {1}{4}}}{\sqrt {-2+2 \sqrt {5}}\, x}\right )}{40}+\frac {\sqrt {-2+2 \sqrt {5}}\, \left (5+\sqrt {5}\right ) \arctan \left (\frac {2 \left (x^{4}+1\right )^{\frac {1}{4}}}{\sqrt {2+2 \sqrt {5}}\, x}\right )}{40}+\frac {\ln \left (\frac {\left (x^{4}+1\right )^{\frac {1}{4}}+x}{x}\right )}{2}-\arctan \left (\frac {\left (x^{4}+1\right )^{\frac {1}{4}}}{x}\right )-\frac {\ln \left (\frac {-x +\left (x^{4}+1\right )^{\frac {1}{4}}}{x}\right )}{2}\) \(202\)

input
int((2*x^8+2*x^4-1)/(x^4+1)^(1/4)/(x^8+x^4-1),x,method=_RETURNVERBOSE)
 
output
1/40*(2+2*5^(1/2))^(1/2)*(-5+5^(1/2))*arctanh(2/(-2+2*5^(1/2))^(1/2)/x*(x^ 
4+1)^(1/4))-1/40*(-2+2*5^(1/2))^(1/2)*(5+5^(1/2))*arctanh(2/(2+2*5^(1/2))^ 
(1/2)/x*(x^4+1)^(1/4))-1/40*(2+2*5^(1/2))^(1/2)*(-5+5^(1/2))*arctan(2/(-2+ 
2*5^(1/2))^(1/2)/x*(x^4+1)^(1/4))+1/40*(-2+2*5^(1/2))^(1/2)*(5+5^(1/2))*ar 
ctan(2/(2+2*5^(1/2))^(1/2)/x*(x^4+1)^(1/4))+1/2*ln(((x^4+1)^(1/4)+x)/x)-ar 
ctan((x^4+1)^(1/4)/x)-1/2*ln((-x+(x^4+1)^(1/4))/x)
 
3.26.65.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 406 vs. \(2 (145) = 290\).

Time = 0.26 (sec) , antiderivative size = 406, normalized size of antiderivative = 1.87 \[ \int \frac {-1+2 x^4+2 x^8}{\sqrt [4]{1+x^4} \left (-1+x^4+x^8\right )} \, dx=-\frac {1}{40} \, \sqrt {10} \sqrt {\sqrt {5} + 1} \log \left (\frac {\sqrt {10} \sqrt {5} x \sqrt {\sqrt {5} + 1} + 10 \, {\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{40} \, \sqrt {10} \sqrt {\sqrt {5} + 1} \log \left (-\frac {\sqrt {10} \sqrt {5} x \sqrt {\sqrt {5} + 1} - 10 \, {\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{40} \, \sqrt {10} \sqrt {\sqrt {5} - 1} \log \left (\frac {\sqrt {10} \sqrt {5} x \sqrt {\sqrt {5} - 1} + 10 \, {\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{40} \, \sqrt {10} \sqrt {\sqrt {5} - 1} \log \left (-\frac {\sqrt {10} \sqrt {5} x \sqrt {\sqrt {5} - 1} - 10 \, {\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{40} \, \sqrt {10} \sqrt {-\sqrt {5} + 1} \log \left (\frac {\sqrt {10} \sqrt {5} x \sqrt {-\sqrt {5} + 1} + 10 \, {\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{40} \, \sqrt {10} \sqrt {-\sqrt {5} + 1} \log \left (-\frac {\sqrt {10} \sqrt {5} x \sqrt {-\sqrt {5} + 1} - 10 \, {\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{40} \, \sqrt {10} \sqrt {-\sqrt {5} - 1} \log \left (\frac {\sqrt {10} \sqrt {5} x \sqrt {-\sqrt {5} - 1} + 10 \, {\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{40} \, \sqrt {10} \sqrt {-\sqrt {5} - 1} \log \left (-\frac {\sqrt {10} \sqrt {5} x \sqrt {-\sqrt {5} - 1} - 10 \, {\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x}\right ) - \arctan \left (\frac {{\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{2} \, \log \left (\frac {x + {\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{2} \, \log \left (-\frac {x - {\left (x^{4} + 1\right )}^{\frac {1}{4}}}{x}\right ) \]

input
integrate((2*x^8+2*x^4-1)/(x^4+1)^(1/4)/(x^8+x^4-1),x, algorithm="fricas")
 
output
-1/40*sqrt(10)*sqrt(sqrt(5) + 1)*log((sqrt(10)*sqrt(5)*x*sqrt(sqrt(5) + 1) 
 + 10*(x^4 + 1)^(1/4))/x) + 1/40*sqrt(10)*sqrt(sqrt(5) + 1)*log(-(sqrt(10) 
*sqrt(5)*x*sqrt(sqrt(5) + 1) - 10*(x^4 + 1)^(1/4))/x) - 1/40*sqrt(10)*sqrt 
(sqrt(5) - 1)*log((sqrt(10)*sqrt(5)*x*sqrt(sqrt(5) - 1) + 10*(x^4 + 1)^(1/ 
4))/x) + 1/40*sqrt(10)*sqrt(sqrt(5) - 1)*log(-(sqrt(10)*sqrt(5)*x*sqrt(sqr 
t(5) - 1) - 10*(x^4 + 1)^(1/4))/x) + 1/40*sqrt(10)*sqrt(-sqrt(5) + 1)*log( 
(sqrt(10)*sqrt(5)*x*sqrt(-sqrt(5) + 1) + 10*(x^4 + 1)^(1/4))/x) - 1/40*sqr 
t(10)*sqrt(-sqrt(5) + 1)*log(-(sqrt(10)*sqrt(5)*x*sqrt(-sqrt(5) + 1) - 10* 
(x^4 + 1)^(1/4))/x) + 1/40*sqrt(10)*sqrt(-sqrt(5) - 1)*log((sqrt(10)*sqrt( 
5)*x*sqrt(-sqrt(5) - 1) + 10*(x^4 + 1)^(1/4))/x) - 1/40*sqrt(10)*sqrt(-sqr 
t(5) - 1)*log(-(sqrt(10)*sqrt(5)*x*sqrt(-sqrt(5) - 1) - 10*(x^4 + 1)^(1/4) 
)/x) - arctan((x^4 + 1)^(1/4)/x) + 1/2*log((x + (x^4 + 1)^(1/4))/x) - 1/2* 
log(-(x - (x^4 + 1)^(1/4))/x)
 
3.26.65.6 Sympy [F(-1)]

Timed out. \[ \int \frac {-1+2 x^4+2 x^8}{\sqrt [4]{1+x^4} \left (-1+x^4+x^8\right )} \, dx=\text {Timed out} \]

input
integrate((2*x**8+2*x**4-1)/(x**4+1)**(1/4)/(x**8+x**4-1),x)
 
output
Timed out
 
3.26.65.7 Maxima [F]

\[ \int \frac {-1+2 x^4+2 x^8}{\sqrt [4]{1+x^4} \left (-1+x^4+x^8\right )} \, dx=\int { \frac {2 \, x^{8} + 2 \, x^{4} - 1}{{\left (x^{8} + x^{4} - 1\right )} {\left (x^{4} + 1\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate((2*x^8+2*x^4-1)/(x^4+1)^(1/4)/(x^8+x^4-1),x, algorithm="maxima")
 
output
integrate((2*x^8 + 2*x^4 - 1)/((x^8 + x^4 - 1)*(x^4 + 1)^(1/4)), x)
 
3.26.65.8 Giac [F]

\[ \int \frac {-1+2 x^4+2 x^8}{\sqrt [4]{1+x^4} \left (-1+x^4+x^8\right )} \, dx=\int { \frac {2 \, x^{8} + 2 \, x^{4} - 1}{{\left (x^{8} + x^{4} - 1\right )} {\left (x^{4} + 1\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate((2*x^8+2*x^4-1)/(x^4+1)^(1/4)/(x^8+x^4-1),x, algorithm="giac")
 
output
integrate((2*x^8 + 2*x^4 - 1)/((x^8 + x^4 - 1)*(x^4 + 1)^(1/4)), x)
 
3.26.65.9 Mupad [F(-1)]

Timed out. \[ \int \frac {-1+2 x^4+2 x^8}{\sqrt [4]{1+x^4} \left (-1+x^4+x^8\right )} \, dx=\int \frac {2\,x^8+2\,x^4-1}{{\left (x^4+1\right )}^{1/4}\,\left (x^8+x^4-1\right )} \,d x \]

input
int((2*x^4 + 2*x^8 - 1)/((x^4 + 1)^(1/4)*(x^4 + x^8 - 1)),x)
 
output
int((2*x^4 + 2*x^8 - 1)/((x^4 + 1)^(1/4)*(x^4 + x^8 - 1)), x)