3.26.90 \(\int \frac {(-1+x^2)^2 \sqrt {x^2+\sqrt {1+x^4}}}{(1+x^2)^2 \sqrt {1+x^4}} \, dx\) [2590]

3.26.90.1 Optimal result
3.26.90.2 Mathematica [A] (verified)
3.26.90.3 Rubi [C] (warning: unable to verify)
3.26.90.4 Maple [F]
3.26.90.5 Fricas [B] (verification not implemented)
3.26.90.6 Sympy [F]
3.26.90.7 Maxima [F]
3.26.90.8 Giac [F]
3.26.90.9 Mupad [F(-1)]

3.26.90.1 Optimal result

Integrand size = 41, antiderivative size = 224 \[ \int \frac {\left (-1+x^2\right )^2 \sqrt {x^2+\sqrt {1+x^4}}}{\left (1+x^2\right )^2 \sqrt {1+x^4}} \, dx=\frac {-x^2 \left (-1+x^2\right )-x^2 \sqrt {1+x^4}}{x \left (1+x^2\right ) \sqrt {x^2+\sqrt {1+x^4}}}+\sqrt {-1+\sqrt {2}} \arctan \left (\frac {\sqrt {2 \left (1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2+\sqrt {1+x^4}}\right )+\sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2+\sqrt {1+x^4}}\right )-\sqrt {1+\sqrt {2}} \text {arctanh}\left (\frac {\sqrt {2 \left (-1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2+\sqrt {1+x^4}}\right ) \]

output
(-x^2*(x^2-1)-(x^4+1)^(1/2)*x^2)/x/(x^2+1)/(x^2+(x^4+1)^(1/2))^(1/2)+(2^(1 
/2)-1)^(1/2)*arctan((2+2*2^(1/2))^(1/2)*x*(x^2+(x^4+1)^(1/2))^(1/2)/(1+x^2 
+(x^4+1)^(1/2)))+arctanh(2^(1/2)*x*(x^2+(x^4+1)^(1/2))^(1/2)/(1+x^2+(x^4+1 
)^(1/2)))*2^(1/2)-(1+2^(1/2))^(1/2)*arctanh((-2+2*2^(1/2))^(1/2)*x*(x^2+(x 
^4+1)^(1/2))^(1/2)/(1+x^2+(x^4+1)^(1/2)))
 
3.26.90.2 Mathematica [A] (verified)

Time = 0.88 (sec) , antiderivative size = 212, normalized size of antiderivative = 0.95 \[ \int \frac {\left (-1+x^2\right )^2 \sqrt {x^2+\sqrt {1+x^4}}}{\left (1+x^2\right )^2 \sqrt {1+x^4}} \, dx=-\frac {x \left (-1+x^2+\sqrt {1+x^4}\right )}{\left (1+x^2\right ) \sqrt {x^2+\sqrt {1+x^4}}}+\sqrt {-1+\sqrt {2}} \arctan \left (\frac {\sqrt {\frac {1}{2}+\frac {1}{\sqrt {2}}} \left (-1+x^2+\sqrt {1+x^4}\right )}{x \sqrt {x^2+\sqrt {1+x^4}}}\right )+\sqrt {2} \text {arctanh}\left (\frac {-1+x^2+\sqrt {1+x^4}}{\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}}\right )-\sqrt {1+\sqrt {2}} \text {arctanh}\left (\frac {-1+x^2+\sqrt {1+x^4}}{\sqrt {2 \left (1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}\right ) \]

input
Integrate[((-1 + x^2)^2*Sqrt[x^2 + Sqrt[1 + x^4]])/((1 + x^2)^2*Sqrt[1 + x 
^4]),x]
 
output
-((x*(-1 + x^2 + Sqrt[1 + x^4]))/((1 + x^2)*Sqrt[x^2 + Sqrt[1 + x^4]])) + 
Sqrt[-1 + Sqrt[2]]*ArcTan[(Sqrt[1/2 + 1/Sqrt[2]]*(-1 + x^2 + Sqrt[1 + x^4] 
))/(x*Sqrt[x^2 + Sqrt[1 + x^4]])] + Sqrt[2]*ArcTanh[(-1 + x^2 + Sqrt[1 + x 
^4])/(Sqrt[2]*x*Sqrt[x^2 + Sqrt[1 + x^4]])] - Sqrt[1 + Sqrt[2]]*ArcTanh[(- 
1 + x^2 + Sqrt[1 + x^4])/(Sqrt[2*(1 + Sqrt[2])]*x*Sqrt[x^2 + Sqrt[1 + x^4] 
])]
 
3.26.90.3 Rubi [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 2.41 (sec) , antiderivative size = 426, normalized size of antiderivative = 1.90, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.049, Rules used = {7293, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^2-1\right )^2 \sqrt {\sqrt {x^4+1}+x^2}}{\left (x^2+1\right )^2 \sqrt {x^4+1}} \, dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (-\frac {4 \sqrt {\sqrt {x^4+1}+x^2}}{\left (x^2+1\right ) \sqrt {x^4+1}}+\frac {4 \sqrt {\sqrt {x^4+1}+x^2}}{\left (x^2+1\right )^2 \sqrt {x^4+1}}+\frac {\sqrt {\sqrt {x^4+1}+x^2}}{\sqrt {x^4+1}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{2} \sqrt {1+i} \text {arctanh}\left (\frac {1-x}{\sqrt {1+i} \sqrt {1-i x^2}}\right )+\frac {\text {arctanh}\left (\frac {1-x}{\sqrt {1+i} \sqrt {1-i x^2}}\right )}{(1+i)^{5/2}}-\frac {1}{2} \sqrt {1+i} \text {arctanh}\left (\frac {x+1}{\sqrt {1+i} \sqrt {1-i x^2}}\right )-\frac {\text {arctanh}\left (\frac {x+1}{\sqrt {1+i} \sqrt {1-i x^2}}\right )}{(1+i)^{5/2}}+\frac {1}{2} \sqrt {1-i} \text {arctanh}\left (\frac {1-x}{\sqrt {1-i} \sqrt {1+i x^2}}\right )+\frac {\text {arctanh}\left (\frac {1-x}{\sqrt {1-i} \sqrt {1+i x^2}}\right )}{(1-i)^{5/2}}-\frac {1}{2} \sqrt {1-i} \text {arctanh}\left (\frac {x+1}{\sqrt {1-i} \sqrt {1+i x^2}}\right )-\frac {\text {arctanh}\left (\frac {x+1}{\sqrt {1-i} \sqrt {1+i x^2}}\right )}{(1-i)^{5/2}}+\frac {\text {arctanh}\left (\frac {\sqrt {2} x}{\sqrt {\sqrt {x^4+1}+x^2}}\right )}{\sqrt {2}}+\frac {i \sqrt {1-i x^2}}{2 (-x+i)}-\frac {i \sqrt {1-i x^2}}{2 (x+i)}-\frac {i \sqrt {1+i x^2}}{2 (-x+i)}+\frac {i \sqrt {1+i x^2}}{2 (x+i)}\)

input
Int[((-1 + x^2)^2*Sqrt[x^2 + Sqrt[1 + x^4]])/((1 + x^2)^2*Sqrt[1 + x^4]),x 
]
 
output
((I/2)*Sqrt[1 - I*x^2])/(I - x) - ((I/2)*Sqrt[1 - I*x^2])/(I + x) - ((I/2) 
*Sqrt[1 + I*x^2])/(I - x) + ((I/2)*Sqrt[1 + I*x^2])/(I + x) + ArcTanh[(1 - 
 x)/(Sqrt[1 + I]*Sqrt[1 - I*x^2])]/(1 + I)^(5/2) + (Sqrt[1 + I]*ArcTanh[(1 
 - x)/(Sqrt[1 + I]*Sqrt[1 - I*x^2])])/2 - ArcTanh[(1 + x)/(Sqrt[1 + I]*Sqr 
t[1 - I*x^2])]/(1 + I)^(5/2) - (Sqrt[1 + I]*ArcTanh[(1 + x)/(Sqrt[1 + I]*S 
qrt[1 - I*x^2])])/2 + ArcTanh[(1 - x)/(Sqrt[1 - I]*Sqrt[1 + I*x^2])]/(1 - 
I)^(5/2) + (Sqrt[1 - I]*ArcTanh[(1 - x)/(Sqrt[1 - I]*Sqrt[1 + I*x^2])])/2 
- ArcTanh[(1 + x)/(Sqrt[1 - I]*Sqrt[1 + I*x^2])]/(1 - I)^(5/2) - (Sqrt[1 - 
 I]*ArcTanh[(1 + x)/(Sqrt[1 - I]*Sqrt[1 + I*x^2])])/2 + ArcTanh[(Sqrt[2]*x 
)/Sqrt[x^2 + Sqrt[1 + x^4]]]/Sqrt[2]
 

3.26.90.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.26.90.4 Maple [F]

\[\int \frac {\left (x^{2}-1\right )^{2} \sqrt {x^{2}+\sqrt {x^{4}+1}}}{\left (x^{2}+1\right )^{2} \sqrt {x^{4}+1}}d x\]

input
int((x^2-1)^2*(x^2+(x^4+1)^(1/2))^(1/2)/(x^2+1)^2/(x^4+1)^(1/2),x)
 
output
int((x^2-1)^2*(x^2+(x^4+1)^(1/2))^(1/2)/(x^2+1)^2/(x^4+1)^(1/2),x)
 
3.26.90.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 498 vs. \(2 (179) = 358\).

Time = 0.97 (sec) , antiderivative size = 498, normalized size of antiderivative = 2.22 \[ \int \frac {\left (-1+x^2\right )^2 \sqrt {x^2+\sqrt {1+x^4}}}{\left (1+x^2\right )^2 \sqrt {1+x^4}} \, dx=\frac {\sqrt {2} {\left (x^{2} + 1\right )} \log \left (4 \, x^{4} + 4 \, \sqrt {x^{4} + 1} x^{2} + 2 \, {\left (\sqrt {2} x^{3} + \sqrt {2} \sqrt {x^{4} + 1} x\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} + 1\right ) - {\left (x^{2} + 1\right )} \sqrt {\sqrt {2} + 1} \log \left (\frac {\sqrt {2} x^{2} + 2 \, x^{2} + {\left (x^{3} + \sqrt {2} x - \sqrt {x^{4} + 1} x + x\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} \sqrt {\sqrt {2} + 1} + \sqrt {x^{4} + 1} {\left (\sqrt {2} + 1\right )}}{x^{2} + 1}\right ) + {\left (x^{2} + 1\right )} \sqrt {\sqrt {2} + 1} \log \left (\frac {\sqrt {2} x^{2} + 2 \, x^{2} - {\left (x^{3} + \sqrt {2} x - \sqrt {x^{4} + 1} x + x\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} \sqrt {\sqrt {2} + 1} + \sqrt {x^{4} + 1} {\left (\sqrt {2} + 1\right )}}{x^{2} + 1}\right ) - {\left (x^{2} + 1\right )} \sqrt {-\sqrt {2} + 1} \log \left (-\frac {\sqrt {2} x^{2} - 2 \, x^{2} + \sqrt {x^{2} + \sqrt {x^{4} + 1}} {\left (\sqrt {x^{4} + 1} x \sqrt {-\sqrt {2} + 1} - {\left (x^{3} - \sqrt {2} x + x\right )} \sqrt {-\sqrt {2} + 1}\right )} + \sqrt {x^{4} + 1} {\left (\sqrt {2} - 1\right )}}{x^{2} + 1}\right ) + {\left (x^{2} + 1\right )} \sqrt {-\sqrt {2} + 1} \log \left (-\frac {\sqrt {2} x^{2} - 2 \, x^{2} - \sqrt {x^{2} + \sqrt {x^{4} + 1}} {\left (\sqrt {x^{4} + 1} x \sqrt {-\sqrt {2} + 1} - {\left (x^{3} - \sqrt {2} x + x\right )} \sqrt {-\sqrt {2} + 1}\right )} + \sqrt {x^{4} + 1} {\left (\sqrt {2} - 1\right )}}{x^{2} + 1}\right ) - 4 \, {\left (x^{3} - \sqrt {x^{4} + 1} x + x\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}}}{4 \, {\left (x^{2} + 1\right )}} \]

input
integrate((x^2-1)^2*(x^2+(x^4+1)^(1/2))^(1/2)/(x^2+1)^2/(x^4+1)^(1/2),x, a 
lgorithm="fricas")
 
output
1/4*(sqrt(2)*(x^2 + 1)*log(4*x^4 + 4*sqrt(x^4 + 1)*x^2 + 2*(sqrt(2)*x^3 + 
sqrt(2)*sqrt(x^4 + 1)*x)*sqrt(x^2 + sqrt(x^4 + 1)) + 1) - (x^2 + 1)*sqrt(s 
qrt(2) + 1)*log((sqrt(2)*x^2 + 2*x^2 + (x^3 + sqrt(2)*x - sqrt(x^4 + 1)*x 
+ x)*sqrt(x^2 + sqrt(x^4 + 1))*sqrt(sqrt(2) + 1) + sqrt(x^4 + 1)*(sqrt(2) 
+ 1))/(x^2 + 1)) + (x^2 + 1)*sqrt(sqrt(2) + 1)*log((sqrt(2)*x^2 + 2*x^2 - 
(x^3 + sqrt(2)*x - sqrt(x^4 + 1)*x + x)*sqrt(x^2 + sqrt(x^4 + 1))*sqrt(sqr 
t(2) + 1) + sqrt(x^4 + 1)*(sqrt(2) + 1))/(x^2 + 1)) - (x^2 + 1)*sqrt(-sqrt 
(2) + 1)*log(-(sqrt(2)*x^2 - 2*x^2 + sqrt(x^2 + sqrt(x^4 + 1))*(sqrt(x^4 + 
 1)*x*sqrt(-sqrt(2) + 1) - (x^3 - sqrt(2)*x + x)*sqrt(-sqrt(2) + 1)) + sqr 
t(x^4 + 1)*(sqrt(2) - 1))/(x^2 + 1)) + (x^2 + 1)*sqrt(-sqrt(2) + 1)*log(-( 
sqrt(2)*x^2 - 2*x^2 - sqrt(x^2 + sqrt(x^4 + 1))*(sqrt(x^4 + 1)*x*sqrt(-sqr 
t(2) + 1) - (x^3 - sqrt(2)*x + x)*sqrt(-sqrt(2) + 1)) + sqrt(x^4 + 1)*(sqr 
t(2) - 1))/(x^2 + 1)) - 4*(x^3 - sqrt(x^4 + 1)*x + x)*sqrt(x^2 + sqrt(x^4 
+ 1)))/(x^2 + 1)
 
3.26.90.6 Sympy [F]

\[ \int \frac {\left (-1+x^2\right )^2 \sqrt {x^2+\sqrt {1+x^4}}}{\left (1+x^2\right )^2 \sqrt {1+x^4}} \, dx=\int \frac {\left (x - 1\right )^{2} \left (x + 1\right )^{2} \sqrt {x^{2} + \sqrt {x^{4} + 1}}}{\left (x^{2} + 1\right )^{2} \sqrt {x^{4} + 1}}\, dx \]

input
integrate((x**2-1)**2*(x**2+(x**4+1)**(1/2))**(1/2)/(x**2+1)**2/(x**4+1)** 
(1/2),x)
 
output
Integral((x - 1)**2*(x + 1)**2*sqrt(x**2 + sqrt(x**4 + 1))/((x**2 + 1)**2* 
sqrt(x**4 + 1)), x)
 
3.26.90.7 Maxima [F]

\[ \int \frac {\left (-1+x^2\right )^2 \sqrt {x^2+\sqrt {1+x^4}}}{\left (1+x^2\right )^2 \sqrt {1+x^4}} \, dx=\int { \frac {\sqrt {x^{2} + \sqrt {x^{4} + 1}} {\left (x^{2} - 1\right )}^{2}}{\sqrt {x^{4} + 1} {\left (x^{2} + 1\right )}^{2}} \,d x } \]

input
integrate((x^2-1)^2*(x^2+(x^4+1)^(1/2))^(1/2)/(x^2+1)^2/(x^4+1)^(1/2),x, a 
lgorithm="maxima")
 
output
integrate(sqrt(x^2 + sqrt(x^4 + 1))*(x^2 - 1)^2/(sqrt(x^4 + 1)*(x^2 + 1)^2 
), x)
 
3.26.90.8 Giac [F]

\[ \int \frac {\left (-1+x^2\right )^2 \sqrt {x^2+\sqrt {1+x^4}}}{\left (1+x^2\right )^2 \sqrt {1+x^4}} \, dx=\int { \frac {\sqrt {x^{2} + \sqrt {x^{4} + 1}} {\left (x^{2} - 1\right )}^{2}}{\sqrt {x^{4} + 1} {\left (x^{2} + 1\right )}^{2}} \,d x } \]

input
integrate((x^2-1)^2*(x^2+(x^4+1)^(1/2))^(1/2)/(x^2+1)^2/(x^4+1)^(1/2),x, a 
lgorithm="giac")
 
output
integrate(sqrt(x^2 + sqrt(x^4 + 1))*(x^2 - 1)^2/(sqrt(x^4 + 1)*(x^2 + 1)^2 
), x)
 
3.26.90.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (-1+x^2\right )^2 \sqrt {x^2+\sqrt {1+x^4}}}{\left (1+x^2\right )^2 \sqrt {1+x^4}} \, dx=\int \frac {{\left (x^2-1\right )}^2\,\sqrt {\sqrt {x^4+1}+x^2}}{{\left (x^2+1\right )}^2\,\sqrt {x^4+1}} \,d x \]

input
int(((x^2 - 1)^2*((x^4 + 1)^(1/2) + x^2)^(1/2))/((x^2 + 1)^2*(x^4 + 1)^(1/ 
2)),x)
 
output
int(((x^2 - 1)^2*((x^4 + 1)^(1/2) + x^2)^(1/2))/((x^2 + 1)^2*(x^4 + 1)^(1/ 
2)), x)