3.26.99 \(\int \frac {x^4}{\sqrt [4]{1+x^4} (1+2 x^4+2 x^8)} \, dx\) [2599]

3.26.99.1 Optimal result
3.26.99.2 Mathematica [A] (verified)
3.26.99.3 Rubi [A] (verified)
3.26.99.4 Maple [C] (verified)
3.26.99.5 Fricas [C] (verification not implemented)
3.26.99.6 Sympy [F(-1)]
3.26.99.7 Maxima [F]
3.26.99.8 Giac [F]
3.26.99.9 Mupad [F(-1)]

3.26.99.1 Optimal result

Integrand size = 27, antiderivative size = 225 \[ \int \frac {x^4}{\sqrt [4]{1+x^4} \left (1+2 x^4+2 x^8\right )} \, dx=\frac {1}{8} \sqrt {2+\sqrt {2}} \arctan \left (\frac {\sqrt {2-\sqrt {2}} x \sqrt [4]{1+x^4}}{-x^2+\sqrt {1+x^4}}\right )-\frac {1}{8} \sqrt {2-\sqrt {2}} \arctan \left (\frac {\sqrt {2+\sqrt {2}} x \sqrt [4]{1+x^4}}{-x^2+\sqrt {1+x^4}}\right )+\frac {1}{8} \sqrt {2+\sqrt {2}} \text {arctanh}\left (\frac {\sqrt {2-\sqrt {2}} x \sqrt [4]{1+x^4}}{x^2+\sqrt {1+x^4}}\right )-\frac {1}{8} \sqrt {2-\sqrt {2}} \text {arctanh}\left (\frac {\sqrt {2+\sqrt {2}} x \sqrt [4]{1+x^4}}{x^2+\sqrt {1+x^4}}\right ) \]

output
1/8*(2+2^(1/2))^(1/2)*arctan((2-2^(1/2))^(1/2)*x*(x^4+1)^(1/4)/(-x^2+(x^4+ 
1)^(1/2)))-1/8*(2-2^(1/2))^(1/2)*arctan((2+2^(1/2))^(1/2)*x*(x^4+1)^(1/4)/ 
(-x^2+(x^4+1)^(1/2)))+1/8*(2+2^(1/2))^(1/2)*arctanh((2-2^(1/2))^(1/2)*x*(x 
^4+1)^(1/4)/(x^2+(x^4+1)^(1/2)))-1/8*(2-2^(1/2))^(1/2)*arctanh((2+2^(1/2)) 
^(1/2)*x*(x^4+1)^(1/4)/(x^2+(x^4+1)^(1/2)))
 
3.26.99.2 Mathematica [A] (verified)

Time = 0.57 (sec) , antiderivative size = 218, normalized size of antiderivative = 0.97 \[ \int \frac {x^4}{\sqrt [4]{1+x^4} \left (1+2 x^4+2 x^8\right )} \, dx=\frac {1}{8} \left (\sqrt {2-\sqrt {2}} \arctan \left (\frac {\sqrt {2+\sqrt {2}} x \sqrt [4]{1+x^4}}{x^2-\sqrt {1+x^4}}\right )+\sqrt {2+\sqrt {2}} \arctan \left (\frac {\sqrt {2-\sqrt {2}} x \sqrt [4]{1+x^4}}{-x^2+\sqrt {1+x^4}}\right )+\sqrt {2+\sqrt {2}} \text {arctanh}\left (\frac {\sqrt {2-\sqrt {2}} x \sqrt [4]{1+x^4}}{x^2+\sqrt {1+x^4}}\right )-\sqrt {2-\sqrt {2}} \text {arctanh}\left (\frac {\sqrt {2+\sqrt {2}} x \sqrt [4]{1+x^4}}{x^2+\sqrt {1+x^4}}\right )\right ) \]

input
Integrate[x^4/((1 + x^4)^(1/4)*(1 + 2*x^4 + 2*x^8)),x]
 
output
(Sqrt[2 - Sqrt[2]]*ArcTan[(Sqrt[2 + Sqrt[2]]*x*(1 + x^4)^(1/4))/(x^2 - Sqr 
t[1 + x^4])] + Sqrt[2 + Sqrt[2]]*ArcTan[(Sqrt[2 - Sqrt[2]]*x*(1 + x^4)^(1/ 
4))/(-x^2 + Sqrt[1 + x^4])] + Sqrt[2 + Sqrt[2]]*ArcTanh[(Sqrt[2 - Sqrt[2]] 
*x*(1 + x^4)^(1/4))/(x^2 + Sqrt[1 + x^4])] - Sqrt[2 - Sqrt[2]]*ArcTanh[(Sq 
rt[2 + Sqrt[2]]*x*(1 + x^4)^(1/4))/(x^2 + Sqrt[1 + x^4])])/8
 
3.26.99.3 Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 242, normalized size of antiderivative = 1.08, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {1852, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4}{\sqrt [4]{x^4+1} \left (2 x^8+2 x^4+1\right )} \, dx\)

\(\Big \downarrow \) 1852

\(\displaystyle \int \left (\frac {1+i}{\left (4 x^4+(2-2 i)\right ) \sqrt [4]{x^4+1}}+\frac {1-i}{\left (4 x^4+(2+2 i)\right ) \sqrt [4]{x^4+1}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {1}{4} (-1)^{5/8} \arctan \left (\frac {(-1)^{7/8} x}{\sqrt [4]{x^4+1}}\right )-\frac {(-1)^{5/8} \arctan \left (1-\frac {(-1)^{7/8} \sqrt {2} x}{\sqrt [4]{x^4+1}}\right )}{4 \sqrt {2}}+\frac {(-1)^{5/8} \arctan \left (\frac {(-1)^{7/8} \sqrt {2} x}{\sqrt [4]{x^4+1}}+1\right )}{4 \sqrt {2}}-\frac {1}{4} (-1)^{5/8} \text {arctanh}\left (\frac {(-1)^{7/8} x}{\sqrt [4]{x^4+1}}\right )-\frac {(-1)^{5/8} \log \left (\frac {\sqrt [8]{-1} \sqrt {2} x}{\sqrt [4]{x^4+1}}+\frac {x^2}{\sqrt {x^4+1}}+\sqrt [4]{-1}\right )}{8 \sqrt {2}}+\frac {(-1)^{5/8} \log \left (\frac {(-1)^{7/8} \sqrt {2} x}{\sqrt [4]{x^4+1}}-\frac {(-1)^{3/4} x^2}{\sqrt {x^4+1}}+1\right )}{8 \sqrt {2}}\)

input
Int[x^4/((1 + x^4)^(1/4)*(1 + 2*x^4 + 2*x^8)),x]
 
output
-1/4*((-1)^(5/8)*ArcTan[((-1)^(7/8)*x)/(1 + x^4)^(1/4)]) - ((-1)^(5/8)*Arc 
Tan[1 - ((-1)^(7/8)*Sqrt[2]*x)/(1 + x^4)^(1/4)])/(4*Sqrt[2]) + ((-1)^(5/8) 
*ArcTan[1 + ((-1)^(7/8)*Sqrt[2]*x)/(1 + x^4)^(1/4)])/(4*Sqrt[2]) - ((-1)^( 
5/8)*ArcTanh[((-1)^(7/8)*x)/(1 + x^4)^(1/4)])/4 - ((-1)^(5/8)*Log[(-1)^(1/ 
4) + x^2/Sqrt[1 + x^4] + ((-1)^(1/8)*Sqrt[2]*x)/(1 + x^4)^(1/4)])/(8*Sqrt[ 
2]) + ((-1)^(5/8)*Log[1 - ((-1)^(3/4)*x^2)/Sqrt[1 + x^4] + ((-1)^(7/8)*Sqr 
t[2]*x)/(1 + x^4)^(1/4)])/(8*Sqrt[2])
 

3.26.99.3.1 Defintions of rubi rules used

rule 1852
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^( 
n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[(d + e*x^n)^q, ( 
f*x)^m/(a + b*x^n + c*x^(2*n)), x], x] /; FreeQ[{a, b, c, d, e, f, q, n}, x 
] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] &&  !IntegerQ[q] && 
IntegerQ[m]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.26.99.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 3.02 (sec) , antiderivative size = 33, normalized size of antiderivative = 0.15

method result size
pseudoelliptic \(-\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )}{\sum }\frac {\ln \left (\frac {-\textit {\_R} x +\left (x^{4}+1\right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R}^{5}}\right )}{8}\) \(33\)
trager \(\frac {\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{7} \ln \left (\frac {-\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{11} x^{4}-2 \left (x^{4}+1\right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{6} x^{3}-2 \sqrt {x^{4}+1}\, \operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{5} x^{2}+2 \left (x^{4}+1\right )^{\frac {3}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{4} x -\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{7}+\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{3} x^{4}+2 \left (x^{4}+1\right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{2} x^{3}-2 \sqrt {x^{4}+1}\, \operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right ) x^{2}-2 \left (x^{4}+1\right )^{\frac {3}{4}} x +\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{3}}{\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{4} x^{4}-x^{4}-1}\right )}{8}-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{3} \ln \left (\frac {\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{11} x^{4}+2 \operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{7} x^{4}+2 \left (x^{4}+1\right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{6} x^{3}+2 \sqrt {x^{4}+1}\, \operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{5} x^{2}+2 \left (x^{4}+1\right )^{\frac {3}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{4} x +\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{7}+\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{3} x^{4}-2 \left (x^{4}+1\right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{2} x^{3}-2 \sqrt {x^{4}+1}\, \operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right ) x^{2}-2 \left (x^{4}+1\right )^{\frac {3}{4}} x +\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{3}}{\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{4} x^{4}-x^{4}-1}\right )}{8}+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{5} \ln \left (-\frac {-2 \sqrt {x^{4}+1}\, \operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{7} x^{2}-2 \left (x^{4}+1\right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{6} x^{3}-\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{5} x^{4}+\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right ) x^{4}+2 \left (x^{4}+1\right )^{\frac {3}{4}} x +\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )}{\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{4} x^{4}+x^{4}+1}\right )}{8}+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right ) \ln \left (-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{9} x^{4}+2 \left (x^{4}+1\right )^{\frac {1}{4}} \operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{6} x^{3}-\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{5} x^{4}+2 \sqrt {x^{4}+1}\, \operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{3} x^{2}-\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{5}+2 \left (x^{4}+1\right )^{\frac {3}{4}} x}{\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )^{4} x^{4}+x^{4}+1}\right )}{8}\) \(606\)

input
int(x^4/(x^4+1)^(1/4)/(2*x^8+2*x^4+1),x,method=_RETURNVERBOSE)
 
output
-1/8*sum(ln((-_R*x+(x^4+1)^(1/4))/x)/_R^5,_R=RootOf(_Z^8+1))
 
3.26.99.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 5.51 (sec) , antiderivative size = 1113, normalized size of antiderivative = 4.95 \[ \int \frac {x^4}{\sqrt [4]{1+x^4} \left (1+2 x^4+2 x^8\right )} \, dx=\text {Too large to display} \]

input
integrate(x^4/(x^4+1)^(1/4)/(2*x^8+2*x^4+1),x, algorithm="fricas")
 
output
-(1/32*I - 1/32)*sqrt(2)*(-1)^(1/8)*log(-(2*sqrt(2)*sqrt(x^4 + 1)*((I + 1) 
*(-1)^(7/8)*x^2 + (-1)^(3/8)*(-(2*I + 2)*x^6 - (I + 1)*x^2)) + 4*(2*x^5 - 
(I - 1)*x)*(x^4 + 1)^(3/4) - sqrt(2)*((-1)^(5/8)*((2*I - 2)*x^8 + (4*I - 4 
)*x^4 + I - 1) + (-1)^(1/8)*(-(2*I - 2)*x^8 + I - 1)) + 4*(x^4 + 1)^(1/4)* 
(I*(-1)^(1/4)*x^3 + (-1)^(3/4)*(2*I*x^7 + I*x^3)))/(2*x^8 + 2*x^4 + 1)) + 
(1/32*I + 1/32)*sqrt(2)*(-1)^(1/8)*log(-(2*sqrt(2)*sqrt(x^4 + 1)*(-(I - 1) 
*(-1)^(7/8)*x^2 + (-1)^(3/8)*((2*I - 2)*x^6 + (I - 1)*x^2)) + 4*(2*x^5 - ( 
I - 1)*x)*(x^4 + 1)^(3/4) - sqrt(2)*((-1)^(5/8)*(-(2*I + 2)*x^8 - (4*I + 4 
)*x^4 - I - 1) + (-1)^(1/8)*((2*I + 2)*x^8 - I - 1)) + 4*(x^4 + 1)^(1/4)*( 
-I*(-1)^(1/4)*x^3 + (-1)^(3/4)*(-2*I*x^7 - I*x^3)))/(2*x^8 + 2*x^4 + 1)) - 
 (1/32*I + 1/32)*sqrt(2)*(-1)^(1/8)*log(-(2*sqrt(2)*sqrt(x^4 + 1)*((I - 1) 
*(-1)^(7/8)*x^2 + (-1)^(3/8)*(-(2*I - 2)*x^6 - (I - 1)*x^2)) + 4*(2*x^5 - 
(I - 1)*x)*(x^4 + 1)^(3/4) - sqrt(2)*((-1)^(5/8)*((2*I + 2)*x^8 + (4*I + 4 
)*x^4 + I + 1) + (-1)^(1/8)*(-(2*I + 2)*x^8 + I + 1)) + 4*(x^4 + 1)^(1/4)* 
(-I*(-1)^(1/4)*x^3 + (-1)^(3/4)*(-2*I*x^7 - I*x^3)))/(2*x^8 + 2*x^4 + 1)) 
+ (1/32*I - 1/32)*sqrt(2)*(-1)^(1/8)*log(-(2*sqrt(2)*sqrt(x^4 + 1)*(-(I + 
1)*(-1)^(7/8)*x^2 + (-1)^(3/8)*((2*I + 2)*x^6 + (I + 1)*x^2)) + 4*(2*x^5 - 
 (I - 1)*x)*(x^4 + 1)^(3/4) - sqrt(2)*((-1)^(5/8)*(-(2*I - 2)*x^8 - (4*I - 
 4)*x^4 - I + 1) + (-1)^(1/8)*((2*I - 2)*x^8 - I + 1)) + 4*(x^4 + 1)^(1/4) 
*(I*(-1)^(1/4)*x^3 + (-1)^(3/4)*(2*I*x^7 + I*x^3)))/(2*x^8 + 2*x^4 + 1)...
 
3.26.99.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^4}{\sqrt [4]{1+x^4} \left (1+2 x^4+2 x^8\right )} \, dx=\text {Timed out} \]

input
integrate(x**4/(x**4+1)**(1/4)/(2*x**8+2*x**4+1),x)
 
output
Timed out
 
3.26.99.7 Maxima [F]

\[ \int \frac {x^4}{\sqrt [4]{1+x^4} \left (1+2 x^4+2 x^8\right )} \, dx=\int { \frac {x^{4}}{{\left (2 \, x^{8} + 2 \, x^{4} + 1\right )} {\left (x^{4} + 1\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate(x^4/(x^4+1)^(1/4)/(2*x^8+2*x^4+1),x, algorithm="maxima")
 
output
integrate(x^4/((2*x^8 + 2*x^4 + 1)*(x^4 + 1)^(1/4)), x)
 
3.26.99.8 Giac [F]

\[ \int \frac {x^4}{\sqrt [4]{1+x^4} \left (1+2 x^4+2 x^8\right )} \, dx=\int { \frac {x^{4}}{{\left (2 \, x^{8} + 2 \, x^{4} + 1\right )} {\left (x^{4} + 1\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate(x^4/(x^4+1)^(1/4)/(2*x^8+2*x^4+1),x, algorithm="giac")
 
output
integrate(x^4/((2*x^8 + 2*x^4 + 1)*(x^4 + 1)^(1/4)), x)
 
3.26.99.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^4}{\sqrt [4]{1+x^4} \left (1+2 x^4+2 x^8\right )} \, dx=\int \frac {x^4}{{\left (x^4+1\right )}^{1/4}\,\left (2\,x^8+2\,x^4+1\right )} \,d x \]

input
int(x^4/((x^4 + 1)^(1/4)*(2*x^4 + 2*x^8 + 1)),x)
 
output
int(x^4/((x^4 + 1)^(1/4)*(2*x^4 + 2*x^8 + 1)), x)