3.27.20 \(\int \frac {\sqrt {a x+\sqrt {-b+a x}}}{x^2} \, dx\) [2620]

3.27.20.1 Optimal result
3.27.20.2 Mathematica [A] (verified)
3.27.20.3 Rubi [A] (verified)
3.27.20.4 Maple [N/A] (verified)
3.27.20.5 Fricas [F(-1)]
3.27.20.6 Sympy [N/A]
3.27.20.7 Maxima [N/A]
3.27.20.8 Giac [C] (verification not implemented)
3.27.20.9 Mupad [N/A]

3.27.20.1 Optimal result

Integrand size = 23, antiderivative size = 229 \[ \int \frac {\sqrt {a x+\sqrt {-b+a x}}}{x^2} \, dx=-\frac {\sqrt {a x+\sqrt {-b+a x}}}{x}-\frac {1}{4} a \text {RootSum}\left [b+b^2-4 b \text {$\#$1}+2 b \text {$\#$1}^2+\text {$\#$1}^4\&,\frac {-\log \left (\sqrt {-b+a x}-\sqrt {a x+\sqrt {-b+a x}}+\text {$\#$1}\right )+2 b \log \left (\sqrt {-b+a x}-\sqrt {a x+\sqrt {-b+a x}}+\text {$\#$1}\right )+2 \log \left (\sqrt {-b+a x}-\sqrt {a x+\sqrt {-b+a x}}+\text {$\#$1}\right ) \text {$\#$1}-2 \log \left (\sqrt {-b+a x}-\sqrt {a x+\sqrt {-b+a x}}+\text {$\#$1}\right ) \text {$\#$1}^2}{-b+b \text {$\#$1}+\text {$\#$1}^3}\&\right ] \]

output
Unintegrable
 
3.27.20.2 Mathematica [A] (verified)

Time = 0.32 (sec) , antiderivative size = 430, normalized size of antiderivative = 1.88 \[ \int \frac {\sqrt {a x+\sqrt {-b+a x}}}{x^2} \, dx=-\frac {\sqrt {a x+\sqrt {-b+a x}}}{x}-a \text {RootSum}\left [1-b+b^2+4 \text {$\#$1}+6 \text {$\#$1}^2+2 b \text {$\#$1}^2+4 \text {$\#$1}^3+\text {$\#$1}^4\&,\frac {b \log \left (-1-\sqrt {-b+a x}+\sqrt {a x+\sqrt {-b+a x}}-\text {$\#$1}\right )-\log \left (-1-\sqrt {-b+a x}+\sqrt {a x+\sqrt {-b+a x}}-\text {$\#$1}\right ) \text {$\#$1}^2}{1+3 \text {$\#$1}+b \text {$\#$1}+3 \text {$\#$1}^2+\text {$\#$1}^3}\&\right ]+a \text {RootSum}\left [1-8 b+16 b^2+4 \text {$\#$1}-16 b \text {$\#$1}+6 \text {$\#$1}^2+8 b \text {$\#$1}^2+4 \text {$\#$1}^3+\text {$\#$1}^4\&,\frac {-\log \left (-1-2 \sqrt {-b+a x}+2 \sqrt {a x+\sqrt {-b+a x}}-\text {$\#$1}\right )+4 b \log \left (-1-2 \sqrt {-b+a x}+2 \sqrt {a x+\sqrt {-b+a x}}-\text {$\#$1}\right )+4 \log \left (-1-2 \sqrt {-b+a x}+2 \sqrt {a x+\sqrt {-b+a x}}-\text {$\#$1}\right ) \text {$\#$1}-\log \left (-1-2 \sqrt {-b+a x}+2 \sqrt {a x+\sqrt {-b+a x}}-\text {$\#$1}\right ) \text {$\#$1}^2}{1-4 b+3 \text {$\#$1}+4 b \text {$\#$1}+3 \text {$\#$1}^2+\text {$\#$1}^3}\&\right ] \]

input
Integrate[Sqrt[a*x + Sqrt[-b + a*x]]/x^2,x]
 
output
-(Sqrt[a*x + Sqrt[-b + a*x]]/x) - a*RootSum[1 - b + b^2 + 4*#1 + 6*#1^2 + 
2*b*#1^2 + 4*#1^3 + #1^4 & , (b*Log[-1 - Sqrt[-b + a*x] + Sqrt[a*x + Sqrt[ 
-b + a*x]] - #1] - Log[-1 - Sqrt[-b + a*x] + Sqrt[a*x + Sqrt[-b + a*x]] - 
#1]*#1^2)/(1 + 3*#1 + b*#1 + 3*#1^2 + #1^3) & ] + a*RootSum[1 - 8*b + 16*b 
^2 + 4*#1 - 16*b*#1 + 6*#1^2 + 8*b*#1^2 + 4*#1^3 + #1^4 & , (-Log[-1 - 2*S 
qrt[-b + a*x] + 2*Sqrt[a*x + Sqrt[-b + a*x]] - #1] + 4*b*Log[-1 - 2*Sqrt[- 
b + a*x] + 2*Sqrt[a*x + Sqrt[-b + a*x]] - #1] + 4*Log[-1 - 2*Sqrt[-b + a*x 
] + 2*Sqrt[a*x + Sqrt[-b + a*x]] - #1]*#1 - Log[-1 - 2*Sqrt[-b + a*x] + 2* 
Sqrt[a*x + Sqrt[-b + a*x]] - #1]*#1^2)/(1 - 4*b + 3*#1 + 4*b*#1 + 3*#1^2 + 
 #1^3) & ]
 
3.27.20.3 Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 177, normalized size of antiderivative = 0.77, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {7267, 1347, 27, 1369, 25, 27, 1363, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sqrt {a x-b}+a x}}{x^2} \, dx\)

\(\Big \downarrow \) 7267

\(\displaystyle 2 a \int \frac {\sqrt {a x-b} \sqrt {a x+\sqrt {a x-b}}}{a^2 x^2}d\sqrt {a x-b}\)

\(\Big \downarrow \) 1347

\(\displaystyle 2 a \left (-\frac {\int -\frac {b \left (2 \sqrt {a x-b}+1\right )}{2 a x \sqrt {a x+\sqrt {a x-b}}}d\sqrt {a x-b}}{2 b}-\frac {\sqrt {\sqrt {a x-b}+a x}}{2 a x}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 a \left (\frac {1}{4} \int \frac {2 \sqrt {a x-b}+1}{a x \sqrt {a x+\sqrt {a x-b}}}d\sqrt {a x-b}-\frac {\sqrt {\sqrt {a x-b}+a x}}{2 a x}\right )\)

\(\Big \downarrow \) 1369

\(\displaystyle 2 a \left (\frac {1}{4} \left (\frac {\int \frac {\left (1-2 \sqrt {b}\right ) \sqrt {b}-\left (1-2 \sqrt {b}\right ) \sqrt {a x-b}}{a x \sqrt {a x+\sqrt {a x-b}}}d\sqrt {a x-b}}{2 \sqrt {b}}-\frac {\int -\frac {\left (2 \sqrt {b}+1\right ) \left (\sqrt {b}+\sqrt {a x-b}\right )}{a x \sqrt {a x+\sqrt {a x-b}}}d\sqrt {a x-b}}{2 \sqrt {b}}\right )-\frac {\sqrt {\sqrt {a x-b}+a x}}{2 a x}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle 2 a \left (\frac {1}{4} \left (\frac {\int \frac {\left (2 \sqrt {b}+1\right ) \left (\sqrt {b}+\sqrt {a x-b}\right )}{a x \sqrt {a x+\sqrt {a x-b}}}d\sqrt {a x-b}}{2 \sqrt {b}}+\frac {\int \frac {\left (1-2 \sqrt {b}\right ) \sqrt {b}-\left (1-2 \sqrt {b}\right ) \sqrt {a x-b}}{a x \sqrt {a x+\sqrt {a x-b}}}d\sqrt {a x-b}}{2 \sqrt {b}}\right )-\frac {\sqrt {\sqrt {a x-b}+a x}}{2 a x}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 a \left (\frac {1}{4} \left (\frac {\left (2 \sqrt {b}+1\right ) \int \frac {\sqrt {b}+\sqrt {a x-b}}{a x \sqrt {a x+\sqrt {a x-b}}}d\sqrt {a x-b}}{2 \sqrt {b}}+\frac {\int \frac {\left (1-2 \sqrt {b}\right ) \sqrt {b}-\left (1-2 \sqrt {b}\right ) \sqrt {a x-b}}{a x \sqrt {a x+\sqrt {a x-b}}}d\sqrt {a x-b}}{2 \sqrt {b}}\right )-\frac {\sqrt {\sqrt {a x-b}+a x}}{2 a x}\right )\)

\(\Big \downarrow \) 1363

\(\displaystyle 2 a \left (\frac {1}{4} \left (\left (1-2 \sqrt {b}\right )^2 b \int \frac {1}{b (a x-b)-2 \left (1-2 \sqrt {b}\right )^2 b^{5/2}}d\left (-\frac {\left (1-2 \sqrt {b}\right ) \sqrt {b} \left (\sqrt {b}+\sqrt {a x-b}\right )}{\sqrt {a x+\sqrt {a x-b}}}\right )-\left (2 \sqrt {b}+1\right ) b \int \frac {1}{2 b^{5/2}+(a x-b) b}d\frac {\sqrt {b} \left (\sqrt {b}-\sqrt {a x-b}\right )}{\sqrt {a x+\sqrt {a x-b}}}\right )-\frac {\sqrt {\sqrt {a x-b}+a x}}{2 a x}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle 2 a \left (\frac {1}{4} \left (\left (1-2 \sqrt {b}\right )^2 b \int \frac {1}{b (a x-b)-2 \left (1-2 \sqrt {b}\right )^2 b^{5/2}}d\left (-\frac {\left (1-2 \sqrt {b}\right ) \sqrt {b} \left (\sqrt {b}+\sqrt {a x-b}\right )}{\sqrt {a x+\sqrt {a x-b}}}\right )-\frac {\left (2 \sqrt {b}+1\right ) \arctan \left (\frac {\sqrt {b}-\sqrt {a x-b}}{\sqrt {2} \sqrt [4]{b} \sqrt {\sqrt {a x-b}+a x}}\right )}{\sqrt {2} b^{3/4}}\right )-\frac {\sqrt {\sqrt {a x-b}+a x}}{2 a x}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle 2 a \left (\frac {1}{4} \left (\frac {\left (1-2 \sqrt {b}\right ) \text {arctanh}\left (\frac {\sqrt {a x-b}+\sqrt {b}}{\sqrt {2} \sqrt [4]{b} \sqrt {\sqrt {a x-b}+a x}}\right )}{\sqrt {2} b^{3/4}}-\frac {\left (2 \sqrt {b}+1\right ) \arctan \left (\frac {\sqrt {b}-\sqrt {a x-b}}{\sqrt {2} \sqrt [4]{b} \sqrt {\sqrt {a x-b}+a x}}\right )}{\sqrt {2} b^{3/4}}\right )-\frac {\sqrt {\sqrt {a x-b}+a x}}{2 a x}\right )\)

input
Int[Sqrt[a*x + Sqrt[-b + a*x]]/x^2,x]
 
output
2*a*(-1/2*Sqrt[a*x + Sqrt[-b + a*x]]/(a*x) + (-(((1 + 2*Sqrt[b])*ArcTan[(S 
qrt[b] - Sqrt[-b + a*x])/(Sqrt[2]*b^(1/4)*Sqrt[a*x + Sqrt[-b + a*x]])])/(S 
qrt[2]*b^(3/4))) + ((1 - 2*Sqrt[b])*ArcTanh[(Sqrt[b] + Sqrt[-b + a*x])/(Sq 
rt[2]*b^(1/4)*Sqrt[a*x + Sqrt[-b + a*x]])])/(Sqrt[2]*b^(3/4)))/4)
 

3.27.20.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1347
Int[((g_.) + (h_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f 
_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(a*h - g*c*x)*(a + c*x^2)^(p + 1)*((d + 
 e*x + f*x^2)^q/(2*a*c*(p + 1))), x] + Simp[2/(4*a*c*(p + 1))   Int[(a + c* 
x^2)^(p + 1)*(d + e*x + f*x^2)^(q - 1)*Simp[g*c*d*(2*p + 3) - a*(h*e*q) + ( 
g*c*e*(2*p + q + 3) - a*(2*h*f*q))*x + g*c*f*(2*p + 2*q + 3)*x^2, x], x], x 
] /; FreeQ[{a, c, d, e, f, g, h}, x] && NeQ[e^2 - 4*d*f, 0] && LtQ[p, -1] & 
& GtQ[q, 0]
 

rule 1363
Int[((g_) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f 
_.)*(x_)^2]), x_Symbol] :> Simp[-2*a*g*h   Subst[Int[1/Simp[2*a^2*g*h*c + a 
*e*x^2, x], x], x, Simp[a*h - g*c*x, x]/Sqrt[d + e*x + f*x^2]], x] /; FreeQ 
[{a, c, d, e, f, g, h}, x] && EqQ[a*h^2*e + 2*g*h*(c*d - a*f) - g^2*c*e, 0]
 

rule 1369
Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + ( 
f_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[(c*d - a*f)^2 + a*c*e^2, 2]}, Simp 
[1/(2*q)   Int[Simp[(-a)*h*e - g*(c*d - a*f - q) + (h*(c*d - a*f + q) - g*c 
*e)*x, x]/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] - Simp[1/(2*q)   Int[ 
Simp[(-a)*h*e - g*(c*d - a*f + q) + (h*(c*d - a*f - q) - g*c*e)*x, x]/((a + 
 c*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g, h}, x] 
&& NeQ[e^2 - 4*d*f, 0] && NegQ[(-a)*c]
 

rule 7267
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfLinear[u, x]}, Si 
mp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/lst[[2]])], x 
] /;  !FalseQ[lst] && SubstForFractionalPowerQ[u, lst[[3]], x]]
 
3.27.20.4 Maple [N/A] (verified)

Time = 0.22 (sec) , antiderivative size = 1056, normalized size of antiderivative = 4.61

method result size
derivativedivides \(\text {Expression too large to display}\) \(1056\)
default \(\text {Expression too large to display}\) \(1056\)

input
int((a*x+(a*x-b)^(1/2))^(1/2)/x^2,x,method=_RETURNVERBOSE)
 
output
2*a*(1/4*(-b)^(1/2)/b*(1/(-b)^(1/2)/((a*x-b)^(1/2)+(-b)^(1/2))*(((a*x-b)^( 
1/2)+(-b)^(1/2))^2+(1-2*(-b)^(1/2))*((a*x-b)^(1/2)+(-b)^(1/2))-(-b)^(1/2)) 
^(3/2)-1/2*(1-2*(-b)^(1/2))/(-b)^(1/2)*((((a*x-b)^(1/2)+(-b)^(1/2))^2+(1-2 
*(-b)^(1/2))*((a*x-b)^(1/2)+(-b)^(1/2))-(-b)^(1/2))^(1/2)+1/2*(1-2*(-b)^(1 
/2))*ln(1/2+(a*x-b)^(1/2)+(((a*x-b)^(1/2)+(-b)^(1/2))^2+(1-2*(-b)^(1/2))*( 
(a*x-b)^(1/2)+(-b)^(1/2))-(-b)^(1/2))^(1/2))+(-b)^(1/2)/(-(-b)^(1/2))^(1/2 
)*ln((-2*(-b)^(1/2)+(1-2*(-b)^(1/2))*((a*x-b)^(1/2)+(-b)^(1/2))+2*(-(-b)^( 
1/2))^(1/2)*(((a*x-b)^(1/2)+(-b)^(1/2))^2+(1-2*(-b)^(1/2))*((a*x-b)^(1/2)+ 
(-b)^(1/2))-(-b)^(1/2))^(1/2))/((a*x-b)^(1/2)+(-b)^(1/2))))-2/(-b)^(1/2)*( 
1/4*(2*(a*x-b)^(1/2)+1)*(((a*x-b)^(1/2)+(-b)^(1/2))^2+(1-2*(-b)^(1/2))*((a 
*x-b)^(1/2)+(-b)^(1/2))-(-b)^(1/2))^(1/2)+1/8*(-4*(-b)^(1/2)-(1-2*(-b)^(1/ 
2))^2)*ln(1/2+(a*x-b)^(1/2)+(((a*x-b)^(1/2)+(-b)^(1/2))^2+(1-2*(-b)^(1/2)) 
*((a*x-b)^(1/2)+(-b)^(1/2))-(-b)^(1/2))^(1/2))))-1/4*(-b)^(1/2)/b*(-1/(-b) 
^(1/2)/((a*x-b)^(1/2)-(-b)^(1/2))*(((a*x-b)^(1/2)-(-b)^(1/2))^2+(1+2*(-b)^ 
(1/2))*((a*x-b)^(1/2)-(-b)^(1/2))+(-b)^(1/2))^(3/2)+1/2*(1+2*(-b)^(1/2))/( 
-b)^(1/2)*((((a*x-b)^(1/2)-(-b)^(1/2))^2+(1+2*(-b)^(1/2))*((a*x-b)^(1/2)-( 
-b)^(1/2))+(-b)^(1/2))^(1/2)+1/2*(1+2*(-b)^(1/2))*ln(1/2+(a*x-b)^(1/2)+((( 
a*x-b)^(1/2)-(-b)^(1/2))^2+(1+2*(-b)^(1/2))*((a*x-b)^(1/2)-(-b)^(1/2))+(-b 
)^(1/2))^(1/2))-(-b)^(1/4)*ln((2*(-b)^(1/2)+(1+2*(-b)^(1/2))*((a*x-b)^(1/2 
)-(-b)^(1/2))+2*(-b)^(1/4)*(((a*x-b)^(1/2)-(-b)^(1/2))^2+(1+2*(-b)^(1/2...
 
3.27.20.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {a x+\sqrt {-b+a x}}}{x^2} \, dx=\text {Timed out} \]

input
integrate((a*x+(a*x-b)^(1/2))^(1/2)/x^2,x, algorithm="fricas")
 
output
Timed out
 
3.27.20.6 Sympy [N/A]

Not integrable

Time = 0.76 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.08 \[ \int \frac {\sqrt {a x+\sqrt {-b+a x}}}{x^2} \, dx=\int \frac {\sqrt {a x + \sqrt {a x - b}}}{x^{2}}\, dx \]

input
integrate((a*x+(a*x-b)**(1/2))**(1/2)/x**2,x)
 
output
Integral(sqrt(a*x + sqrt(a*x - b))/x**2, x)
 
3.27.20.7 Maxima [N/A]

Not integrable

Time = 0.26 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.09 \[ \int \frac {\sqrt {a x+\sqrt {-b+a x}}}{x^2} \, dx=\int { \frac {\sqrt {a x + \sqrt {a x - b}}}{x^{2}} \,d x } \]

input
integrate((a*x+(a*x-b)^(1/2))^(1/2)/x^2,x, algorithm="maxima")
 
output
integrate(sqrt(a*x + sqrt(a*x - b))/x^2, x)
 
3.27.20.8 Giac [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.36 (sec) , antiderivative size = 240, normalized size of antiderivative = 1.05 \[ \int \frac {\sqrt {a x+\sqrt {-b+a x}}}{x^2} \, dx=\frac {2 \, a^{2} {\left (\sqrt {a x - b} - \sqrt {a x + \sqrt {a x - b}}\right )}^{3} + 2 \, a^{2} b {\left (\sqrt {a x - b} - \sqrt {a x + \sqrt {a x - b}}\right )} + 3 \, a^{2} {\left (\sqrt {a x - b} - \sqrt {a x + \sqrt {a x - b}}\right )}^{2} + a^{2} b + a^{2} {\left (\sqrt {a x - b} - \sqrt {a x + \sqrt {a x - b}}\right )}}{{\left ({\left (\sqrt {a x - b} - \sqrt {a x + \sqrt {a x - b}}\right )}^{4} + 2 \, b {\left (\sqrt {a x - b} - \sqrt {a x + \sqrt {a x - b}}\right )}^{2} + b^{2} + 4 \, b {\left (\sqrt {a x - b} - \sqrt {a x + \sqrt {a x - b}}\right )} + b\right )} a} \]

input
integrate((a*x+(a*x-b)^(1/2))^(1/2)/x^2,x, algorithm="giac")
 
output
(2*a^2*(sqrt(a*x - b) - sqrt(a*x + sqrt(a*x - b)))^3 + 2*a^2*b*(sqrt(a*x - 
 b) - sqrt(a*x + sqrt(a*x - b))) + 3*a^2*(sqrt(a*x - b) - sqrt(a*x + sqrt( 
a*x - b)))^2 + a^2*b + a^2*(sqrt(a*x - b) - sqrt(a*x + sqrt(a*x - b))))/(( 
(sqrt(a*x - b) - sqrt(a*x + sqrt(a*x - b)))^4 + 2*b*(sqrt(a*x - b) - sqrt( 
a*x + sqrt(a*x - b)))^2 + b^2 + 4*b*(sqrt(a*x - b) - sqrt(a*x + sqrt(a*x - 
 b))) + b)*a)
 
3.27.20.9 Mupad [N/A]

Not integrable

Time = 6.54 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.09 \[ \int \frac {\sqrt {a x+\sqrt {-b+a x}}}{x^2} \, dx=\int \frac {\sqrt {a\,x+\sqrt {a\,x-b}}}{x^2} \,d x \]

input
int((a*x + (a*x - b)^(1/2))^(1/2)/x^2,x)
 
output
int((a*x + (a*x - b)^(1/2))^(1/2)/x^2, x)