3.27.68 \(\int \frac {b^5+a^5 x^5}{\sqrt {b^2 x+a^2 x^3} (-b^5+a^5 x^5)} \, dx\) [2668]

3.27.68.1 Optimal result
3.27.68.2 Mathematica [A] (verified)
3.27.68.3 Rubi [C] (warning: unable to verify)
3.27.68.4 Maple [A] (verified)
3.27.68.5 Fricas [B] (verification not implemented)
3.27.68.6 Sympy [F]
3.27.68.7 Maxima [F]
3.27.68.8 Giac [F]
3.27.68.9 Mupad [F(-1)]

3.27.68.1 Optimal result

Integrand size = 44, antiderivative size = 239 \[ \int \frac {b^5+a^5 x^5}{\sqrt {b^2 x+a^2 x^3} \left (-b^5+a^5 x^5\right )} \, dx=-\frac {2 \sqrt {2 \left (-1+\sqrt {5}\right )} \arctan \left (\frac {\sqrt {\frac {1}{2}+\frac {\sqrt {5}}{2}} \sqrt {a} \sqrt {b} \sqrt {b^2 x+a^2 x^3}}{b^2+a^2 x^2}\right )}{5 \sqrt {a} \sqrt {b}}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {a} \sqrt {b} \sqrt {b^2 x+a^2 x^3}}{b^2+a^2 x^2}\right )}{5 \sqrt {a} \sqrt {b}}-\frac {2 \sqrt {2 \left (1+\sqrt {5}\right )} \text {arctanh}\left (\frac {\sqrt {-\frac {1}{2}+\frac {\sqrt {5}}{2}} \sqrt {a} \sqrt {b} \sqrt {b^2 x+a^2 x^3}}{b^2+a^2 x^2}\right )}{5 \sqrt {a} \sqrt {b}} \]

output
-2/5*(-2+2*5^(1/2))^(1/2)*arctan(1/2*(2+2*5^(1/2))^(1/2)*a^(1/2)*b^(1/2)*( 
a^2*x^3+b^2*x)^(1/2)/(a^2*x^2+b^2))/a^(1/2)/b^(1/2)-1/5*2^(1/2)*arctanh(2^ 
(1/2)*a^(1/2)*b^(1/2)*(a^2*x^3+b^2*x)^(1/2)/(a^2*x^2+b^2))/a^(1/2)/b^(1/2) 
-2/5*(2+2*5^(1/2))^(1/2)*arctanh(1/2*(-2+2*5^(1/2))^(1/2)*a^(1/2)*b^(1/2)* 
(a^2*x^3+b^2*x)^(1/2)/(a^2*x^2+b^2))/a^(1/2)/b^(1/2)
 
3.27.68.2 Mathematica [A] (verified)

Time = 1.51 (sec) , antiderivative size = 214, normalized size of antiderivative = 0.90 \[ \int \frac {b^5+a^5 x^5}{\sqrt {b^2 x+a^2 x^3} \left (-b^5+a^5 x^5\right )} \, dx=-\frac {\sqrt {2} \sqrt {x} \sqrt {b^2+a^2 x^2} \left (2 \sqrt {-1+\sqrt {5}} \arctan \left (\frac {\sqrt {\frac {1}{2} \left (1+\sqrt {5}\right )} \sqrt {a} \sqrt {b} \sqrt {x}}{\sqrt {b^2+a^2 x^2}}\right )+\text {arctanh}\left (\frac {\sqrt {2} \sqrt {a} \sqrt {b} \sqrt {x}}{\sqrt {b^2+a^2 x^2}}\right )+2 \sqrt {1+\sqrt {5}} \text {arctanh}\left (\frac {\sqrt {\frac {1}{2} \left (-1+\sqrt {5}\right )} \sqrt {a} \sqrt {b} \sqrt {x}}{\sqrt {b^2+a^2 x^2}}\right )\right )}{5 \sqrt {a} \sqrt {b} \sqrt {x \left (b^2+a^2 x^2\right )}} \]

input
Integrate[(b^5 + a^5*x^5)/(Sqrt[b^2*x + a^2*x^3]*(-b^5 + a^5*x^5)),x]
 
output
-1/5*(Sqrt[2]*Sqrt[x]*Sqrt[b^2 + a^2*x^2]*(2*Sqrt[-1 + Sqrt[5]]*ArcTan[(Sq 
rt[(1 + Sqrt[5])/2]*Sqrt[a]*Sqrt[b]*Sqrt[x])/Sqrt[b^2 + a^2*x^2]] + ArcTan 
h[(Sqrt[2]*Sqrt[a]*Sqrt[b]*Sqrt[x])/Sqrt[b^2 + a^2*x^2]] + 2*Sqrt[1 + Sqrt 
[5]]*ArcTanh[(Sqrt[(-1 + Sqrt[5])/2]*Sqrt[a]*Sqrt[b]*Sqrt[x])/Sqrt[b^2 + a 
^2*x^2]]))/(Sqrt[a]*Sqrt[b]*Sqrt[x*(b^2 + a^2*x^2)])
 
3.27.68.3 Rubi [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 5.81 (sec) , antiderivative size = 1405, normalized size of antiderivative = 5.88, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {2467, 25, 2035, 7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a^5 x^5+b^5}{\sqrt {a^2 x^3+b^2 x} \left (a^5 x^5-b^5\right )} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt {a^2 x^2+b^2} \int -\frac {b^5+a^5 x^5}{\sqrt {x} \sqrt {b^2+a^2 x^2} \left (b^5-a^5 x^5\right )}dx}{\sqrt {a^2 x^3+b^2 x}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt {x} \sqrt {a^2 x^2+b^2} \int \frac {b^5+a^5 x^5}{\sqrt {x} \sqrt {b^2+a^2 x^2} \left (b^5-a^5 x^5\right )}dx}{\sqrt {a^2 x^3+b^2 x}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {a^2 x^2+b^2} \int \frac {b^5+a^5 x^5}{\sqrt {b^2+a^2 x^2} \left (b^5-a^5 x^5\right )}d\sqrt {x}}{\sqrt {a^2 x^3+b^2 x}}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {a^2 x^2+b^2} \int \left (\frac {2 b^5}{\sqrt {b^2+a^2 x^2} \left (b^5-a^5 x^5\right )}-\frac {1}{\sqrt {b^2+a^2 x^2}}\right )d\sqrt {x}}{\sqrt {a^2 x^3+b^2 x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {b^2+a^2 x^2} \left (\frac {i \left (1-\sqrt [5]{-1}\right ) \arctan \left (\frac {\sqrt [10]{-1} \sqrt {1-(-1)^{3/5}} \sqrt {a} \sqrt {b} \sqrt {x}}{\sqrt {b^2+a^2 x^2}}\right )}{5 \left (1-\sqrt [5]{-1}+(-1)^{2/5}\right ) \sqrt {1-(-1)^{3/5}} \sqrt {a} \sqrt {b}}-\frac {(-1)^{9/10} \arctan \left (\frac {\sqrt [10]{-1} \sqrt {1-(-1)^{3/5}} \sqrt {a} \sqrt {b} \sqrt {x}}{\sqrt {b^2+a^2 x^2}}\right )}{5 \sqrt {1-(-1)^{3/5}} \sqrt {a} \sqrt {b}}+\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt {a} \sqrt {b} \sqrt {x}}{\sqrt {b^2+a^2 x^2}}\right )}{5 \sqrt {2} \sqrt {a} \sqrt {b}}-\frac {(-1)^{4/5} \left (1-\sqrt [5]{-1}+(-1)^{2/5}\right ) \left (1-(-1)^{3/5}\right ) \text {arctanh}\left (\frac {\sqrt [5]{-1} \sqrt {1-\sqrt [5]{-1}} \sqrt {a} \sqrt {b} \sqrt {x}}{\sqrt {b^2+a^2 x^2}}\right )}{5 \sqrt {1-\sqrt [5]{-1}} \sqrt {a} \sqrt {b}}-\frac {(-1)^{4/5} \text {arctanh}\left (\frac {\sqrt [5]{-1} \sqrt {1-\sqrt [5]{-1}} \sqrt {a} \sqrt {b} \sqrt {x}}{\sqrt {b^2+a^2 x^2}}\right )}{5 \sqrt {1-\sqrt [5]{-1}} \sqrt {a} \sqrt {b}}+\frac {\left (1-(-1)^{4/5}\right ) (b+a x) \sqrt {\frac {b^2+a^2 x^2}{(b+a x)^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {a} \sqrt {x}}{\sqrt {b}}\right ),\frac {1}{2}\right )}{5 \left (1+(-1)^{3/5}\right ) \sqrt {a} \sqrt {b} \sqrt {b^2+a^2 x^2}}+\frac {\left (1-\sqrt [5]{-1}+(-1)^{2/5}\right ) (b+a x) \sqrt {\frac {b^2+a^2 x^2}{(b+a x)^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {a} \sqrt {x}}{\sqrt {b}}\right ),\frac {1}{2}\right )}{5 \sqrt {a} \sqrt {b} \sqrt {b^2+a^2 x^2}}+\frac {(b+a x) \sqrt {\frac {b^2+a^2 x^2}{(b+a x)^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {a} \sqrt {x}}{\sqrt {b}}\right ),\frac {1}{2}\right )}{5 \left (1+(-1)^{2/5}\right ) \sqrt {a} \sqrt {b} \sqrt {b^2+a^2 x^2}}+\frac {(b+a x) \sqrt {\frac {b^2+a^2 x^2}{(b+a x)^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {a} \sqrt {x}}{\sqrt {b}}\right ),\frac {1}{2}\right )}{5 \left (1-\sqrt [5]{-1}\right ) \sqrt {a} \sqrt {b} \sqrt {b^2+a^2 x^2}}-\frac {2 (b+a x) \sqrt {\frac {b^2+a^2 x^2}{(b+a x)^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {a} \sqrt {x}}{\sqrt {b}}\right ),\frac {1}{2}\right )}{5 \sqrt {a} \sqrt {b} \sqrt {b^2+a^2 x^2}}-\frac {\sqrt [5]{-1} \left (1+\sqrt [5]{-1}\right ) \left (1+(-1)^{2/5}\right ) (b+a x) \sqrt {\frac {b^2+a^2 x^2}{(b+a x)^2}} \operatorname {EllipticPi}\left (\frac {1}{4} (-1)^{4/5} \left (1-\sqrt [5]{-1}\right )^2,2 \arctan \left (\frac {\sqrt {a} \sqrt {x}}{\sqrt {b}}\right ),\frac {1}{2}\right )}{10 \sqrt {a} \sqrt {b} \sqrt {b^2+a^2 x^2}}-\frac {\left (1-(-1)^{2/5}\right ) (b+a x) \sqrt {\frac {b^2+a^2 x^2}{(b+a x)^2}} \operatorname {EllipticPi}\left (-\frac {1}{4} (-1)^{3/5} \left (1+(-1)^{2/5}\right )^2,2 \arctan \left (\frac {\sqrt {a} \sqrt {x}}{\sqrt {b}}\right ),\frac {1}{2}\right )}{10 \left (1+(-1)^{2/5}\right ) \sqrt {a} \sqrt {b} \sqrt {b^2+a^2 x^2}}+\frac {\sqrt [5]{-1} \left (1-\sqrt [5]{-1}\right )^2 \left (1+\sqrt [5]{-1}\right ) (b+a x) \sqrt {\frac {b^2+a^2 x^2}{(b+a x)^2}} \operatorname {EllipticPi}\left (\frac {1}{4} (-1)^{2/5} \left (1-(-1)^{3/5}\right )^2,2 \arctan \left (\frac {\sqrt {a} \sqrt {x}}{\sqrt {b}}\right ),\frac {1}{2}\right )}{10 \sqrt {a} \sqrt {b} \sqrt {b^2+a^2 x^2}}+\frac {(-1)^{3/5} \left (1+\sqrt [5]{-1}\right ) (b+a x) \sqrt {\frac {b^2+a^2 x^2}{(b+a x)^2}} \operatorname {EllipticPi}\left (-\frac {1}{4} \sqrt [5]{-1} \left (1+(-1)^{4/5}\right )^2,2 \arctan \left (\frac {\sqrt {a} \sqrt {x}}{\sqrt {b}}\right ),\frac {1}{2}\right )}{10 \left (1-\sqrt [5]{-1}+(-1)^{2/5}\right ) \sqrt {a} \sqrt {b} \sqrt {b^2+a^2 x^2}}\right )}{\sqrt {a^2 x^3+b^2 x}}\)

input
Int[(b^5 + a^5*x^5)/(Sqrt[b^2*x + a^2*x^3]*(-b^5 + a^5*x^5)),x]
 
output
(-2*Sqrt[x]*Sqrt[b^2 + a^2*x^2]*(-1/5*((-1)^(9/10)*ArcTan[((-1)^(1/10)*Sqr 
t[1 - (-1)^(3/5)]*Sqrt[a]*Sqrt[b]*Sqrt[x])/Sqrt[b^2 + a^2*x^2]])/(Sqrt[1 - 
 (-1)^(3/5)]*Sqrt[a]*Sqrt[b]) + ((I/5)*(1 - (-1)^(1/5))*ArcTan[((-1)^(1/10 
)*Sqrt[1 - (-1)^(3/5)]*Sqrt[a]*Sqrt[b]*Sqrt[x])/Sqrt[b^2 + a^2*x^2]])/((1 
- (-1)^(1/5) + (-1)^(2/5))*Sqrt[1 - (-1)^(3/5)]*Sqrt[a]*Sqrt[b]) + ArcTanh 
[(Sqrt[2]*Sqrt[a]*Sqrt[b]*Sqrt[x])/Sqrt[b^2 + a^2*x^2]]/(5*Sqrt[2]*Sqrt[a] 
*Sqrt[b]) - ((-1)^(4/5)*ArcTanh[((-1)^(1/5)*Sqrt[1 - (-1)^(1/5)]*Sqrt[a]*S 
qrt[b]*Sqrt[x])/Sqrt[b^2 + a^2*x^2]])/(5*Sqrt[1 - (-1)^(1/5)]*Sqrt[a]*Sqrt 
[b]) - ((-1)^(4/5)*(1 - (-1)^(1/5) + (-1)^(2/5))*(1 - (-1)^(3/5))*ArcTanh[ 
((-1)^(1/5)*Sqrt[1 - (-1)^(1/5)]*Sqrt[a]*Sqrt[b]*Sqrt[x])/Sqrt[b^2 + a^2*x 
^2]])/(5*Sqrt[1 - (-1)^(1/5)]*Sqrt[a]*Sqrt[b]) - (2*(b + a*x)*Sqrt[(b^2 + 
a^2*x^2)/(b + a*x)^2]*EllipticF[2*ArcTan[(Sqrt[a]*Sqrt[x])/Sqrt[b]], 1/2]) 
/(5*Sqrt[a]*Sqrt[b]*Sqrt[b^2 + a^2*x^2]) + ((b + a*x)*Sqrt[(b^2 + a^2*x^2) 
/(b + a*x)^2]*EllipticF[2*ArcTan[(Sqrt[a]*Sqrt[x])/Sqrt[b]], 1/2])/(5*(1 - 
 (-1)^(1/5))*Sqrt[a]*Sqrt[b]*Sqrt[b^2 + a^2*x^2]) + ((b + a*x)*Sqrt[(b^2 + 
 a^2*x^2)/(b + a*x)^2]*EllipticF[2*ArcTan[(Sqrt[a]*Sqrt[x])/Sqrt[b]], 1/2] 
)/(5*(1 + (-1)^(2/5))*Sqrt[a]*Sqrt[b]*Sqrt[b^2 + a^2*x^2]) + ((1 - (-1)^(1 
/5) + (-1)^(2/5))*(b + a*x)*Sqrt[(b^2 + a^2*x^2)/(b + a*x)^2]*EllipticF[2* 
ArcTan[(Sqrt[a]*Sqrt[x])/Sqrt[b]], 1/2])/(5*Sqrt[a]*Sqrt[b]*Sqrt[b^2 + a^2 
*x^2]) + ((1 - (-1)^(4/5))*(b + a*x)*Sqrt[(b^2 + a^2*x^2)/(b + a*x)^2]*...
 

3.27.68.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.27.68.4 Maple [A] (verified)

Time = 1.44 (sec) , antiderivative size = 171, normalized size of antiderivative = 0.72

method result size
default \(\frac {8 \arctan \left (\frac {2 \sqrt {x \left (a^{2} x^{2}+b^{2}\right )}}{x \sqrt {-2 \sqrt {5}\, \sqrt {a^{2} b^{2}}+2 a b}}\right )}{5 \sqrt {-2 \sqrt {5}\, \sqrt {a^{2} b^{2}}+2 a b}}+\frac {8 \arctan \left (\frac {2 \sqrt {x \left (a^{2} x^{2}+b^{2}\right )}}{x \sqrt {2 \sqrt {5}\, \sqrt {a^{2} b^{2}}+2 a b}}\right )}{5 \sqrt {2 \sqrt {5}\, \sqrt {a^{2} b^{2}}+2 a b}}-\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {x \left (a^{2} x^{2}+b^{2}\right )}\, \sqrt {2}}{2 x \sqrt {a b}}\right )}{5 \sqrt {a b}}\) \(171\)
pseudoelliptic \(\frac {8 \arctan \left (\frac {2 \sqrt {x \left (a^{2} x^{2}+b^{2}\right )}}{x \sqrt {-2 \sqrt {5}\, \sqrt {a^{2} b^{2}}+2 a b}}\right )}{5 \sqrt {-2 \sqrt {5}\, \sqrt {a^{2} b^{2}}+2 a b}}+\frac {8 \arctan \left (\frac {2 \sqrt {x \left (a^{2} x^{2}+b^{2}\right )}}{x \sqrt {2 \sqrt {5}\, \sqrt {a^{2} b^{2}}+2 a b}}\right )}{5 \sqrt {2 \sqrt {5}\, \sqrt {a^{2} b^{2}}+2 a b}}-\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {x \left (a^{2} x^{2}+b^{2}\right )}\, \sqrt {2}}{2 x \sqrt {a b}}\right )}{5 \sqrt {a b}}\) \(171\)
elliptic \(\text {Expression too large to display}\) \(2129\)

input
int((a^5*x^5+b^5)/(a^2*x^3+b^2*x)^(1/2)/(a^5*x^5-b^5),x,method=_RETURNVERB 
OSE)
 
output
8/5/(-2*5^(1/2)*(a^2*b^2)^(1/2)+2*a*b)^(1/2)*arctan(2*(x*(a^2*x^2+b^2))^(1 
/2)/x/(-2*5^(1/2)*(a^2*b^2)^(1/2)+2*a*b)^(1/2))+8/5/(2*5^(1/2)*(a^2*b^2)^( 
1/2)+2*a*b)^(1/2)*arctan(2*(x*(a^2*x^2+b^2))^(1/2)/x/(2*5^(1/2)*(a^2*b^2)^ 
(1/2)+2*a*b)^(1/2))-1/5*2^(1/2)/(a*b)^(1/2)*arctanh(1/2*(x*(a^2*x^2+b^2))^ 
(1/2)/x*2^(1/2)/(a*b)^(1/2))
 
3.27.68.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 997 vs. \(2 (177) = 354\).

Time = 0.48 (sec) , antiderivative size = 2075, normalized size of antiderivative = 8.68 \[ \int \frac {b^5+a^5 x^5}{\sqrt {b^2 x+a^2 x^3} \left (-b^5+a^5 x^5\right )} \, dx=\text {Too large to display} \]

input
integrate((a^5*x^5+b^5)/(a^2*x^3+b^2*x)^(1/2)/(a^5*x^5-b^5),x, algorithm=" 
fricas")
 
output
[1/10*sqrt(2)*sqrt((5*sqrt(1/5)*a*b*sqrt(1/(a^2*b^2)) + 1)/(a*b))*log(2*(2 
*a^4*x^4 + 6*a^2*b^2*x^2 + 2*b^4 + sqrt(2)*(a^3*b*x^2 - 2*a^2*b^2*x + a*b^ 
3 - 5*sqrt(1/5)*(a^4*b^2*x^2 + a^2*b^4)*sqrt(1/(a^2*b^2)))*sqrt(a^2*x^3 + 
b^2*x)*sqrt((5*sqrt(1/5)*a*b*sqrt(1/(a^2*b^2)) + 1)/(a*b)) + 10*sqrt(1/5)* 
(a^4*b^2*x^3 + a^2*b^4*x)*sqrt(1/(a^2*b^2)))/(a^4*x^4 + a^3*b*x^3 + a^2*b^ 
2*x^2 + a*b^3*x + b^4)) - 1/10*sqrt(2)*sqrt((5*sqrt(1/5)*a*b*sqrt(1/(a^2*b 
^2)) + 1)/(a*b))*log(2*(2*a^4*x^4 + 6*a^2*b^2*x^2 + 2*b^4 - sqrt(2)*(a^3*b 
*x^2 - 2*a^2*b^2*x + a*b^3 - 5*sqrt(1/5)*(a^4*b^2*x^2 + a^2*b^4)*sqrt(1/(a 
^2*b^2)))*sqrt(a^2*x^3 + b^2*x)*sqrt((5*sqrt(1/5)*a*b*sqrt(1/(a^2*b^2)) + 
1)/(a*b)) + 10*sqrt(1/5)*(a^4*b^2*x^3 + a^2*b^4*x)*sqrt(1/(a^2*b^2)))/(a^4 
*x^4 + a^3*b*x^3 + a^2*b^2*x^2 + a*b^3*x + b^4)) + 1/10*sqrt(2)*sqrt(-(5*s 
qrt(1/5)*a*b*sqrt(1/(a^2*b^2)) - 1)/(a*b))*log(2*(2*a^4*x^4 + 6*a^2*b^2*x^ 
2 + 2*b^4 + sqrt(2)*(a^3*b*x^2 - 2*a^2*b^2*x + a*b^3 + 5*sqrt(1/5)*(a^4*b^ 
2*x^2 + a^2*b^4)*sqrt(1/(a^2*b^2)))*sqrt(a^2*x^3 + b^2*x)*sqrt(-(5*sqrt(1/ 
5)*a*b*sqrt(1/(a^2*b^2)) - 1)/(a*b)) - 10*sqrt(1/5)*(a^4*b^2*x^3 + a^2*b^4 
*x)*sqrt(1/(a^2*b^2)))/(a^4*x^4 + a^3*b*x^3 + a^2*b^2*x^2 + a*b^3*x + b^4) 
) - 1/10*sqrt(2)*sqrt(-(5*sqrt(1/5)*a*b*sqrt(1/(a^2*b^2)) - 1)/(a*b))*log( 
2*(2*a^4*x^4 + 6*a^2*b^2*x^2 + 2*b^4 - sqrt(2)*(a^3*b*x^2 - 2*a^2*b^2*x + 
a*b^3 + 5*sqrt(1/5)*(a^4*b^2*x^2 + a^2*b^4)*sqrt(1/(a^2*b^2)))*sqrt(a^2*x^ 
3 + b^2*x)*sqrt(-(5*sqrt(1/5)*a*b*sqrt(1/(a^2*b^2)) - 1)/(a*b)) - 10*sq...
 
3.27.68.6 Sympy [F]

\[ \int \frac {b^5+a^5 x^5}{\sqrt {b^2 x+a^2 x^3} \left (-b^5+a^5 x^5\right )} \, dx=\int \frac {\left (a x + b\right ) \left (a^{4} x^{4} - a^{3} b x^{3} + a^{2} b^{2} x^{2} - a b^{3} x + b^{4}\right )}{\sqrt {x \left (a^{2} x^{2} + b^{2}\right )} \left (a x - b\right ) \left (a^{4} x^{4} + a^{3} b x^{3} + a^{2} b^{2} x^{2} + a b^{3} x + b^{4}\right )}\, dx \]

input
integrate((a**5*x**5+b**5)/(a**2*x**3+b**2*x)**(1/2)/(a**5*x**5-b**5),x)
 
output
Integral((a*x + b)*(a**4*x**4 - a**3*b*x**3 + a**2*b**2*x**2 - a*b**3*x + 
b**4)/(sqrt(x*(a**2*x**2 + b**2))*(a*x - b)*(a**4*x**4 + a**3*b*x**3 + a** 
2*b**2*x**2 + a*b**3*x + b**4)), x)
 
3.27.68.7 Maxima [F]

\[ \int \frac {b^5+a^5 x^5}{\sqrt {b^2 x+a^2 x^3} \left (-b^5+a^5 x^5\right )} \, dx=\int { \frac {a^{5} x^{5} + b^{5}}{{\left (a^{5} x^{5} - b^{5}\right )} \sqrt {a^{2} x^{3} + b^{2} x}} \,d x } \]

input
integrate((a^5*x^5+b^5)/(a^2*x^3+b^2*x)^(1/2)/(a^5*x^5-b^5),x, algorithm=" 
maxima")
 
output
integrate((a^5*x^5 + b^5)/((a^5*x^5 - b^5)*sqrt(a^2*x^3 + b^2*x)), x)
 
3.27.68.8 Giac [F]

\[ \int \frac {b^5+a^5 x^5}{\sqrt {b^2 x+a^2 x^3} \left (-b^5+a^5 x^5\right )} \, dx=\int { \frac {a^{5} x^{5} + b^{5}}{{\left (a^{5} x^{5} - b^{5}\right )} \sqrt {a^{2} x^{3} + b^{2} x}} \,d x } \]

input
integrate((a^5*x^5+b^5)/(a^2*x^3+b^2*x)^(1/2)/(a^5*x^5-b^5),x, algorithm=" 
giac")
 
output
integrate((a^5*x^5 + b^5)/((a^5*x^5 - b^5)*sqrt(a^2*x^3 + b^2*x)), x)
 
3.27.68.9 Mupad [F(-1)]

Timed out. \[ \int \frac {b^5+a^5 x^5}{\sqrt {b^2 x+a^2 x^3} \left (-b^5+a^5 x^5\right )} \, dx=\text {Hanged} \]

input
int(-(b^5 + a^5*x^5)/((b^5 - a^5*x^5)*(b^2*x + a^2*x^3)^(1/2)),x)
 
output
\text{Hanged}