3.27.80 \(\int \frac {(-1+x^2) \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2} \, dx\) [2680]

3.27.80.1 Optimal result
3.27.80.2 Mathematica [A] (verified)
3.27.80.3 Rubi [F]
3.27.80.4 Maple [F]
3.27.80.5 Fricas [B] (verification not implemented)
3.27.80.6 Sympy [F]
3.27.80.7 Maxima [F]
3.27.80.8 Giac [F]
3.27.80.9 Mupad [F(-1)]

3.27.80.1 Optimal result

Integrand size = 30, antiderivative size = 242 \[ \int \frac {\left (-1+x^2\right ) \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2} \, dx=\frac {1}{2} x \sqrt {x^2+\sqrt {1+x^4}}+\frac {\arctan \left (\frac {\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2+\sqrt {1+x^4}}\right )}{\sqrt {2}}-2 \sqrt {-1+\sqrt {2}} \arctan \left (\frac {\sqrt {2 \left (1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2+\sqrt {1+x^4}}\right )-2 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2+\sqrt {1+x^4}}\right )+2 \sqrt {1+\sqrt {2}} \text {arctanh}\left (\frac {\sqrt {2 \left (-1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2+\sqrt {1+x^4}}\right ) \]

output
1/2*x*(x^2+(x^4+1)^(1/2))^(1/2)+1/2*arctan(2^(1/2)*x*(x^2+(x^4+1)^(1/2))^( 
1/2)/(1+x^2+(x^4+1)^(1/2)))*2^(1/2)-2*(2^(1/2)-1)^(1/2)*arctan((2+2*2^(1/2 
))^(1/2)*x*(x^2+(x^4+1)^(1/2))^(1/2)/(1+x^2+(x^4+1)^(1/2)))-2*arctanh(2^(1 
/2)*x*(x^2+(x^4+1)^(1/2))^(1/2)/(1+x^2+(x^4+1)^(1/2)))*2^(1/2)+2*(1+2^(1/2 
))^(1/2)*arctanh((-2+2*2^(1/2))^(1/2)*x*(x^2+(x^4+1)^(1/2))^(1/2)/(1+x^2+( 
x^4+1)^(1/2)))
 
3.27.80.2 Mathematica [A] (verified)

Time = 0.79 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.00 \[ \int \frac {\left (-1+x^2\right ) \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2} \, dx=\frac {1}{2} \left (x \sqrt {x^2+\sqrt {1+x^4}}+\sqrt {2} \arctan \left (\frac {-1+x^2+\sqrt {1+x^4}}{\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}}\right )-4 \sqrt {-1+\sqrt {2}} \arctan \left (\frac {\sqrt {\frac {1}{2}+\frac {1}{\sqrt {2}}} \left (-1+x^2+\sqrt {1+x^4}\right )}{x \sqrt {x^2+\sqrt {1+x^4}}}\right )-4 \sqrt {2} \text {arctanh}\left (\frac {-1+x^2+\sqrt {1+x^4}}{\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}}\right )+4 \sqrt {1+\sqrt {2}} \text {arctanh}\left (\frac {-1+x^2+\sqrt {1+x^4}}{\sqrt {2 \left (1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}\right )\right ) \]

input
Integrate[((-1 + x^2)*Sqrt[x^2 + Sqrt[1 + x^4]])/(1 + x^2),x]
 
output
(x*Sqrt[x^2 + Sqrt[1 + x^4]] + Sqrt[2]*ArcTan[(-1 + x^2 + Sqrt[1 + x^4])/( 
Sqrt[2]*x*Sqrt[x^2 + Sqrt[1 + x^4]])] - 4*Sqrt[-1 + Sqrt[2]]*ArcTan[(Sqrt[ 
1/2 + 1/Sqrt[2]]*(-1 + x^2 + Sqrt[1 + x^4]))/(x*Sqrt[x^2 + Sqrt[1 + x^4]]) 
] - 4*Sqrt[2]*ArcTanh[(-1 + x^2 + Sqrt[1 + x^4])/(Sqrt[2]*x*Sqrt[x^2 + Sqr 
t[1 + x^4]])] + 4*Sqrt[1 + Sqrt[2]]*ArcTanh[(-1 + x^2 + Sqrt[1 + x^4])/(Sq 
rt[2*(1 + Sqrt[2])]*x*Sqrt[x^2 + Sqrt[1 + x^4]])])/2
 
3.27.80.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^2-1\right ) \sqrt {\sqrt {x^4+1}+x^2}}{x^2+1} \, dx\)

\(\Big \downarrow \) 7276

\(\displaystyle \int \left (\sqrt {\sqrt {x^4+1}+x^2}-\frac {2 \sqrt {\sqrt {x^4+1}+x^2}}{x^2+1}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \int \sqrt {x^2+\sqrt {x^4+1}}dx-i \int \frac {\sqrt {x^2+\sqrt {x^4+1}}}{i-x}dx-i \int \frac {\sqrt {x^2+\sqrt {x^4+1}}}{x+i}dx\)

input
Int[((-1 + x^2)*Sqrt[x^2 + Sqrt[1 + x^4]])/(1 + x^2),x]
 
output
$Aborted
 

3.27.80.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.27.80.4 Maple [F]

\[\int \frac {\left (x^{2}-1\right ) \sqrt {x^{2}+\sqrt {x^{4}+1}}}{x^{2}+1}d x\]

input
int((x^2-1)*(x^2+(x^4+1)^(1/2))^(1/2)/(x^2+1),x)
 
output
int((x^2-1)*(x^2+(x^4+1)^(1/2))^(1/2)/(x^2+1),x)
 
3.27.80.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 503 vs. \(2 (189) = 378\).

Time = 2.42 (sec) , antiderivative size = 503, normalized size of antiderivative = 2.08 \[ \int \frac {\left (-1+x^2\right ) \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2} \, dx=\frac {1}{2} \, \sqrt {x^{2} + \sqrt {x^{4} + 1}} x - \frac {1}{4} \, \sqrt {2} \arctan \left (-\frac {{\left (\sqrt {2} x^{2} - \sqrt {2} \sqrt {x^{4} + 1}\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}}}{2 \, x}\right ) + \frac {1}{2} \, \sqrt {2} \log \left (4 \, x^{4} + 4 \, \sqrt {x^{4} + 1} x^{2} - 2 \, {\left (\sqrt {2} x^{3} + \sqrt {2} \sqrt {x^{4} + 1} x\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} + 1\right ) + \frac {1}{4} \, \sqrt {-4 \, \sqrt {2} + 4} \log \left (-\frac {2 \, \sqrt {2} x^{2} - 4 \, x^{2} + \sqrt {x^{2} + \sqrt {x^{4} + 1}} {\left (\sqrt {x^{4} + 1} x \sqrt {-4 \, \sqrt {2} + 4} - {\left (x^{3} - \sqrt {2} x + x\right )} \sqrt {-4 \, \sqrt {2} + 4}\right )} + 2 \, \sqrt {x^{4} + 1} {\left (\sqrt {2} - 1\right )}}{x^{2} + 1}\right ) - \frac {1}{4} \, \sqrt {-4 \, \sqrt {2} + 4} \log \left (-\frac {2 \, \sqrt {2} x^{2} - 4 \, x^{2} - \sqrt {x^{2} + \sqrt {x^{4} + 1}} {\left (\sqrt {x^{4} + 1} x \sqrt {-4 \, \sqrt {2} + 4} - {\left (x^{3} - \sqrt {2} x + x\right )} \sqrt {-4 \, \sqrt {2} + 4}\right )} + 2 \, \sqrt {x^{4} + 1} {\left (\sqrt {2} - 1\right )}}{x^{2} + 1}\right ) + \frac {1}{2} \, \sqrt {\sqrt {2} + 1} \log \left (\frac {2 \, {\left (\sqrt {2} x^{2} + 2 \, x^{2} + {\left (x^{3} + \sqrt {2} x - \sqrt {x^{4} + 1} x + x\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} \sqrt {\sqrt {2} + 1} + \sqrt {x^{4} + 1} {\left (\sqrt {2} + 1\right )}\right )}}{x^{2} + 1}\right ) - \frac {1}{2} \, \sqrt {\sqrt {2} + 1} \log \left (\frac {2 \, {\left (\sqrt {2} x^{2} + 2 \, x^{2} - {\left (x^{3} + \sqrt {2} x - \sqrt {x^{4} + 1} x + x\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} \sqrt {\sqrt {2} + 1} + \sqrt {x^{4} + 1} {\left (\sqrt {2} + 1\right )}\right )}}{x^{2} + 1}\right ) \]

input
integrate((x^2-1)*(x^2+(x^4+1)^(1/2))^(1/2)/(x^2+1),x, algorithm="fricas")
 
output
1/2*sqrt(x^2 + sqrt(x^4 + 1))*x - 1/4*sqrt(2)*arctan(-1/2*(sqrt(2)*x^2 - s 
qrt(2)*sqrt(x^4 + 1))*sqrt(x^2 + sqrt(x^4 + 1))/x) + 1/2*sqrt(2)*log(4*x^4 
 + 4*sqrt(x^4 + 1)*x^2 - 2*(sqrt(2)*x^3 + sqrt(2)*sqrt(x^4 + 1)*x)*sqrt(x^ 
2 + sqrt(x^4 + 1)) + 1) + 1/4*sqrt(-4*sqrt(2) + 4)*log(-(2*sqrt(2)*x^2 - 4 
*x^2 + sqrt(x^2 + sqrt(x^4 + 1))*(sqrt(x^4 + 1)*x*sqrt(-4*sqrt(2) + 4) - ( 
x^3 - sqrt(2)*x + x)*sqrt(-4*sqrt(2) + 4)) + 2*sqrt(x^4 + 1)*(sqrt(2) - 1) 
)/(x^2 + 1)) - 1/4*sqrt(-4*sqrt(2) + 4)*log(-(2*sqrt(2)*x^2 - 4*x^2 - sqrt 
(x^2 + sqrt(x^4 + 1))*(sqrt(x^4 + 1)*x*sqrt(-4*sqrt(2) + 4) - (x^3 - sqrt( 
2)*x + x)*sqrt(-4*sqrt(2) + 4)) + 2*sqrt(x^4 + 1)*(sqrt(2) - 1))/(x^2 + 1) 
) + 1/2*sqrt(sqrt(2) + 1)*log(2*(sqrt(2)*x^2 + 2*x^2 + (x^3 + sqrt(2)*x - 
sqrt(x^4 + 1)*x + x)*sqrt(x^2 + sqrt(x^4 + 1))*sqrt(sqrt(2) + 1) + sqrt(x^ 
4 + 1)*(sqrt(2) + 1))/(x^2 + 1)) - 1/2*sqrt(sqrt(2) + 1)*log(2*(sqrt(2)*x^ 
2 + 2*x^2 - (x^3 + sqrt(2)*x - sqrt(x^4 + 1)*x + x)*sqrt(x^2 + sqrt(x^4 + 
1))*sqrt(sqrt(2) + 1) + sqrt(x^4 + 1)*(sqrt(2) + 1))/(x^2 + 1))
 
3.27.80.6 Sympy [F]

\[ \int \frac {\left (-1+x^2\right ) \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2} \, dx=\int \frac {\left (x - 1\right ) \left (x + 1\right ) \sqrt {x^{2} + \sqrt {x^{4} + 1}}}{x^{2} + 1}\, dx \]

input
integrate((x**2-1)*(x**2+(x**4+1)**(1/2))**(1/2)/(x**2+1),x)
 
output
Integral((x - 1)*(x + 1)*sqrt(x**2 + sqrt(x**4 + 1))/(x**2 + 1), x)
 
3.27.80.7 Maxima [F]

\[ \int \frac {\left (-1+x^2\right ) \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2} \, dx=\int { \frac {\sqrt {x^{2} + \sqrt {x^{4} + 1}} {\left (x^{2} - 1\right )}}{x^{2} + 1} \,d x } \]

input
integrate((x^2-1)*(x^2+(x^4+1)^(1/2))^(1/2)/(x^2+1),x, algorithm="maxima")
 
output
integrate(sqrt(x^2 + sqrt(x^4 + 1))*(x^2 - 1)/(x^2 + 1), x)
 
3.27.80.8 Giac [F]

\[ \int \frac {\left (-1+x^2\right ) \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2} \, dx=\int { \frac {\sqrt {x^{2} + \sqrt {x^{4} + 1}} {\left (x^{2} - 1\right )}}{x^{2} + 1} \,d x } \]

input
integrate((x^2-1)*(x^2+(x^4+1)^(1/2))^(1/2)/(x^2+1),x, algorithm="giac")
 
output
integrate(sqrt(x^2 + sqrt(x^4 + 1))*(x^2 - 1)/(x^2 + 1), x)
 
3.27.80.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (-1+x^2\right ) \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2} \, dx=\int \frac {\left (x^2-1\right )\,\sqrt {\sqrt {x^4+1}+x^2}}{x^2+1} \,d x \]

input
int(((x^2 - 1)*((x^4 + 1)^(1/2) + x^2)^(1/2))/(x^2 + 1),x)
 
output
int(((x^2 - 1)*((x^4 + 1)^(1/2) + x^2)^(1/2))/(x^2 + 1), x)