3.27.82 \(\int \frac {x (-a+x)}{(x^2 (-a+x))^{2/3} (a^2 d-2 a d x+(-1+d) x^2)} \, dx\) [2682]

3.27.82.1 Optimal result
3.27.82.2 Mathematica [A] (verified)
3.27.82.3 Rubi [A] (verified)
3.27.82.4 Maple [A] (verified)
3.27.82.5 Fricas [A] (verification not implemented)
3.27.82.6 Sympy [F]
3.27.82.7 Maxima [F]
3.27.82.8 Giac [A] (verification not implemented)
3.27.82.9 Mupad [F(-1)]

3.27.82.1 Optimal result

Integrand size = 40, antiderivative size = 243 \[ \int \frac {x (-a+x)}{\left (x^2 (-a+x)\right )^{2/3} \left (a^2 d-2 a d x+(-1+d) x^2\right )} \, dx=-\frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} x^2}{x^2+2 \sqrt [3]{d} \left (-a x^2+x^3\right )^{2/3}}\right )}{2 a d^{2/3}}+\frac {\log \left (x-\sqrt [6]{d} \sqrt [3]{-a x^2+x^3}\right )}{2 a d^{2/3}}+\frac {\log \left (x+\sqrt [6]{d} \sqrt [3]{-a x^2+x^3}\right )}{2 a d^{2/3}}-\frac {\log \left (x^2-\sqrt [6]{d} x \sqrt [3]{-a x^2+x^3}+\sqrt [3]{d} \left (-a x^2+x^3\right )^{2/3}\right )}{4 a d^{2/3}}-\frac {\log \left (x^2+\sqrt [6]{d} x \sqrt [3]{-a x^2+x^3}+\sqrt [3]{d} \left (-a x^2+x^3\right )^{2/3}\right )}{4 a d^{2/3}} \]

output
-1/2*3^(1/2)*arctan(3^(1/2)*x^2/(x^2+2*d^(1/3)*(-a*x^2+x^3)^(2/3)))/a/d^(2 
/3)+1/2*ln(x-d^(1/6)*(-a*x^2+x^3)^(1/3))/a/d^(2/3)+1/2*ln(x+d^(1/6)*(-a*x^ 
2+x^3)^(1/3))/a/d^(2/3)-1/4*ln(x^2-d^(1/6)*x*(-a*x^2+x^3)^(1/3)+d^(1/3)*(- 
a*x^2+x^3)^(2/3))/a/d^(2/3)-1/4*ln(x^2+d^(1/6)*x*(-a*x^2+x^3)^(1/3)+d^(1/3 
)*(-a*x^2+x^3)^(2/3))/a/d^(2/3)
 
3.27.82.2 Mathematica [A] (verified)

Time = 0.42 (sec) , antiderivative size = 217, normalized size of antiderivative = 0.89 \[ \int \frac {x (-a+x)}{\left (x^2 (-a+x)\right )^{2/3} \left (a^2 d-2 a d x+(-1+d) x^2\right )} \, dx=-\frac {x^{4/3} (-a+x)^{2/3} \left (2 \sqrt {3} \arctan \left (\frac {\sqrt {3} x^{2/3}}{x^{2/3}+2 \sqrt [3]{d} (-a+x)^{2/3}}\right )-2 \log \left (\sqrt [3]{x}-\sqrt [6]{d} \sqrt [3]{-a+x}\right )-2 \log \left (\sqrt [3]{x}+\sqrt [6]{d} \sqrt [3]{-a+x}\right )+\log \left (x^{2/3}-\sqrt [6]{d} \sqrt [3]{x} \sqrt [3]{-a+x}+\sqrt [3]{d} (-a+x)^{2/3}\right )+\log \left (x^{2/3}+\sqrt [6]{d} \sqrt [3]{x} \sqrt [3]{-a+x}+\sqrt [3]{d} (-a+x)^{2/3}\right )\right )}{4 a d^{2/3} \left (x^2 (-a+x)\right )^{2/3}} \]

input
Integrate[(x*(-a + x))/((x^2*(-a + x))^(2/3)*(a^2*d - 2*a*d*x + (-1 + d)*x 
^2)),x]
 
output
-1/4*(x^(4/3)*(-a + x)^(2/3)*(2*Sqrt[3]*ArcTan[(Sqrt[3]*x^(2/3))/(x^(2/3) 
+ 2*d^(1/3)*(-a + x)^(2/3))] - 2*Log[x^(1/3) - d^(1/6)*(-a + x)^(1/3)] - 2 
*Log[x^(1/3) + d^(1/6)*(-a + x)^(1/3)] + Log[x^(2/3) - d^(1/6)*x^(1/3)*(-a 
 + x)^(1/3) + d^(1/3)*(-a + x)^(2/3)] + Log[x^(2/3) + d^(1/6)*x^(1/3)*(-a 
+ x)^(1/3) + d^(1/3)*(-a + x)^(2/3)]))/(a*d^(2/3)*(x^2*(-a + x))^(2/3))
 
3.27.82.3 Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 279, normalized size of antiderivative = 1.15, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.075, Rules used = {2467, 1205, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x (x-a)}{\left (x^2 (x-a)\right )^{2/3} \left (a^2 d-2 a d x+(d-1) x^2\right )} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {x^{4/3} (x-a)^{2/3} \int \frac {\sqrt [3]{x-a}}{\sqrt [3]{x} \left (d a^2-2 d x a-(1-d) x^2\right )}dx}{\left (-\left (x^2 (a-x)\right )\right )^{2/3}}\)

\(\Big \downarrow \) 1205

\(\displaystyle \frac {x^{4/3} (x-a)^{2/3} \int \left (\frac {\sqrt [3]{x-a} (d-1)}{a \sqrt {d} \sqrt [3]{x} \left (-2 d a-2 \sqrt {d} a-2 (1-d) x\right )}+\frac {\sqrt [3]{x-a} (d-1)}{a \sqrt {d} \sqrt [3]{x} \left (2 d a-2 \sqrt {d} a+2 (1-d) x\right )}\right )dx}{\left (-\left (x^2 (a-x)\right )\right )^{2/3}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {x^{4/3} (x-a)^{2/3} \left (\frac {\sqrt {3} \arctan \left (\frac {1}{\sqrt {3}}-\frac {2 \sqrt [3]{x}}{\sqrt {3} \sqrt [6]{d} \sqrt [3]{x-a}}\right )}{2 a d^{2/3}}+\frac {\sqrt {3} \arctan \left (\frac {2 \sqrt [3]{x}}{\sqrt {3} \sqrt [6]{d} \sqrt [3]{x-a}}+\frac {1}{\sqrt {3}}\right )}{2 a d^{2/3}}-\frac {\log \left (-2 a \sqrt {d} \left (\sqrt {d}+1\right )-2 (1-d) x\right )}{4 a d^{2/3}}-\frac {\log \left (2 (1-d) x-2 a \left (1-\sqrt {d}\right ) \sqrt {d}\right )}{4 a d^{2/3}}+\frac {3 \log \left (-\sqrt [3]{x-a}-\frac {\sqrt [3]{x}}{\sqrt [6]{d}}\right )}{4 a d^{2/3}}+\frac {3 \log \left (\frac {\sqrt [3]{x}}{\sqrt [6]{d}}-\sqrt [3]{x-a}\right )}{4 a d^{2/3}}\right )}{\left (-\left (x^2 (a-x)\right )\right )^{2/3}}\)

input
Int[(x*(-a + x))/((x^2*(-a + x))^(2/3)*(a^2*d - 2*a*d*x + (-1 + d)*x^2)),x 
]
 
output
(x^(4/3)*(-a + x)^(2/3)*((Sqrt[3]*ArcTan[1/Sqrt[3] - (2*x^(1/3))/(Sqrt[3]* 
d^(1/6)*(-a + x)^(1/3))])/(2*a*d^(2/3)) + (Sqrt[3]*ArcTan[1/Sqrt[3] + (2*x 
^(1/3))/(Sqrt[3]*d^(1/6)*(-a + x)^(1/3))])/(2*a*d^(2/3)) - Log[-2*a*(1 + S 
qrt[d])*Sqrt[d] - 2*(1 - d)*x]/(4*a*d^(2/3)) - Log[-2*a*(1 - Sqrt[d])*Sqrt 
[d] + 2*(1 - d)*x]/(4*a*d^(2/3)) + (3*Log[-(x^(1/3)/d^(1/6)) - (-a + x)^(1 
/3)])/(4*a*d^(2/3)) + (3*Log[x^(1/3)/d^(1/6) - (-a + x)^(1/3)])/(4*a*d^(2/ 
3))))/(-((a - x)*x^2))^(2/3)
 

3.27.82.3.1 Defintions of rubi rules used

rule 1205
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_.) + (b_.)*(x 
_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^ 
n, 1/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x] && 
 !IntegerQ[m] &&  !IntegerQ[n]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 
3.27.82.4 Maple [A] (verified)

Time = 0.78 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.58

method result size
pseudoelliptic \(\frac {2 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\left (\frac {1}{d}\right )^{\frac {1}{3}} x^{2}+2 \left (-x^{2} \left (a -x \right )\right )^{\frac {2}{3}}\right )}{3 \left (\frac {1}{d}\right )^{\frac {1}{3}} x^{2}}\right )+2 \ln \left (\frac {-\left (\frac {1}{d}\right )^{\frac {1}{3}} x^{2}+\left (-x^{2} \left (a -x \right )\right )^{\frac {2}{3}}}{x^{2}}\right )-\ln \left (\frac {\left (\frac {1}{d}\right )^{\frac {1}{3}} \left (-x^{2} \left (a -x \right )\right )^{\frac {2}{3}}+\left (-a +x \right ) \left (-x^{2} \left (a -x \right )\right )^{\frac {1}{3}}+\left (\frac {1}{d}\right )^{\frac {2}{3}} x^{2}}{x^{2}}\right )}{4 a d \left (\frac {1}{d}\right )^{\frac {1}{3}}}\) \(141\)

input
int(x*(-a+x)/(x^2*(-a+x))^(2/3)/(a^2*d-2*a*d*x+(-1+d)*x^2),x,method=_RETUR 
NVERBOSE)
 
output
1/4*(2*3^(1/2)*arctan(1/3*3^(1/2)*((1/d)^(1/3)*x^2+2*(-x^2*(a-x))^(2/3))/( 
1/d)^(1/3)/x^2)+2*ln((-(1/d)^(1/3)*x^2+(-x^2*(a-x))^(2/3))/x^2)-ln(((1/d)^ 
(1/3)*(-x^2*(a-x))^(2/3)+(-a+x)*(-x^2*(a-x))^(1/3)+(1/d)^(2/3)*x^2)/x^2))/ 
a/d/(1/d)^(1/3)
 
3.27.82.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 167, normalized size of antiderivative = 0.69 \[ \int \frac {x (-a+x)}{\left (x^2 (-a+x)\right )^{2/3} \left (a^2 d-2 a d x+(-1+d) x^2\right )} \, dx=\frac {2 \, \sqrt {3} {\left (d^{2}\right )}^{\frac {1}{6}} d \arctan \left (\frac {\sqrt {3} {\left ({\left (d^{2}\right )}^{\frac {1}{3}} x^{2} + 2 \, {\left (-a x^{2} + x^{3}\right )}^{\frac {2}{3}} d\right )} {\left (d^{2}\right )}^{\frac {1}{6}}}{3 \, d x^{2}}\right ) - {\left (d^{2}\right )}^{\frac {2}{3}} \log \left (\frac {{\left (d^{2}\right )}^{\frac {2}{3}} x^{2} + {\left (-a x^{2} + x^{3}\right )}^{\frac {2}{3}} {\left (d^{2}\right )}^{\frac {1}{3}} d - {\left (a d^{2} - d^{2} x\right )} {\left (-a x^{2} + x^{3}\right )}^{\frac {1}{3}}}{x^{2}}\right ) + 2 \, {\left (d^{2}\right )}^{\frac {2}{3}} \log \left (-\frac {{\left (d^{2}\right )}^{\frac {1}{3}} x^{2} - {\left (-a x^{2} + x^{3}\right )}^{\frac {2}{3}} d}{x^{2}}\right )}{4 \, a d^{2}} \]

input
integrate(x*(-a+x)/(x^2*(-a+x))^(2/3)/(a^2*d-2*a*d*x+(-1+d)*x^2),x, algori 
thm="fricas")
 
output
1/4*(2*sqrt(3)*(d^2)^(1/6)*d*arctan(1/3*sqrt(3)*((d^2)^(1/3)*x^2 + 2*(-a*x 
^2 + x^3)^(2/3)*d)*(d^2)^(1/6)/(d*x^2)) - (d^2)^(2/3)*log(((d^2)^(2/3)*x^2 
 + (-a*x^2 + x^3)^(2/3)*(d^2)^(1/3)*d - (a*d^2 - d^2*x)*(-a*x^2 + x^3)^(1/ 
3))/x^2) + 2*(d^2)^(2/3)*log(-((d^2)^(1/3)*x^2 - (-a*x^2 + x^3)^(2/3)*d)/x 
^2))/(a*d^2)
 
3.27.82.6 Sympy [F]

\[ \int \frac {x (-a+x)}{\left (x^2 (-a+x)\right )^{2/3} \left (a^2 d-2 a d x+(-1+d) x^2\right )} \, dx=\int \frac {x \left (- a + x\right )}{\left (x^{2} \left (- a + x\right )\right )^{\frac {2}{3}} \left (a^{2} d - 2 a d x + d x^{2} - x^{2}\right )}\, dx \]

input
integrate(x*(-a+x)/(x**2*(-a+x))**(2/3)/(a**2*d-2*a*d*x+(-1+d)*x**2),x)
 
output
Integral(x*(-a + x)/((x**2*(-a + x))**(2/3)*(a**2*d - 2*a*d*x + d*x**2 - x 
**2)), x)
 
3.27.82.7 Maxima [F]

\[ \int \frac {x (-a+x)}{\left (x^2 (-a+x)\right )^{2/3} \left (a^2 d-2 a d x+(-1+d) x^2\right )} \, dx=\int { -\frac {{\left (a - x\right )} x}{{\left (a^{2} d - 2 \, a d x + {\left (d - 1\right )} x^{2}\right )} \left (-{\left (a - x\right )} x^{2}\right )^{\frac {2}{3}}} \,d x } \]

input
integrate(x*(-a+x)/(x^2*(-a+x))^(2/3)/(a^2*d-2*a*d*x+(-1+d)*x^2),x, algori 
thm="maxima")
 
output
-integrate((a - x)*x/((a^2*d - 2*a*d*x + (d - 1)*x^2)*(-(a - x)*x^2)^(2/3) 
), x)
 
3.27.82.8 Giac [A] (verification not implemented)

Time = 0.36 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.42 \[ \int \frac {x (-a+x)}{\left (x^2 (-a+x)\right )^{2/3} \left (a^2 d-2 a d x+(-1+d) x^2\right )} \, dx=\frac {\sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} d^{\frac {1}{3}} {\left (2 \, {\left (-\frac {a}{x} + 1\right )}^{\frac {2}{3}} + \frac {1}{d^{\frac {1}{3}}}\right )}\right )}{2 \, a {\left | d \right |}^{\frac {2}{3}}} - \frac {\log \left ({\left (-\frac {a}{x} + 1\right )}^{\frac {4}{3}} + \frac {{\left (-\frac {a}{x} + 1\right )}^{\frac {2}{3}}}{d^{\frac {1}{3}}} + \frac {1}{d^{\frac {2}{3}}}\right )}{4 \, a {\left | d \right |}^{\frac {2}{3}}} + \frac {\log \left ({\left | {\left (-\frac {a}{x} + 1\right )}^{\frac {2}{3}} - \frac {1}{d^{\frac {1}{3}}} \right |}\right )}{2 \, a d^{\frac {2}{3}}} \]

input
integrate(x*(-a+x)/(x^2*(-a+x))^(2/3)/(a^2*d-2*a*d*x+(-1+d)*x^2),x, algori 
thm="giac")
 
output
1/2*sqrt(3)*arctan(1/3*sqrt(3)*d^(1/3)*(2*(-a/x + 1)^(2/3) + 1/d^(1/3)))/( 
a*abs(d)^(2/3)) - 1/4*log((-a/x + 1)^(4/3) + (-a/x + 1)^(2/3)/d^(1/3) + 1/ 
d^(2/3))/(a*abs(d)^(2/3)) + 1/2*log(abs((-a/x + 1)^(2/3) - 1/d^(1/3)))/(a* 
d^(2/3))
 
3.27.82.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x (-a+x)}{\left (x^2 (-a+x)\right )^{2/3} \left (a^2 d-2 a d x+(-1+d) x^2\right )} \, dx=\int -\frac {x\,\left (a-x\right )}{{\left (-x^2\,\left (a-x\right )\right )}^{2/3}\,\left (d\,a^2-2\,d\,a\,x+\left (d-1\right )\,x^2\right )} \,d x \]

input
int(-(x*(a - x))/((-x^2*(a - x))^(2/3)*(a^2*d + x^2*(d - 1) - 2*a*d*x)),x)
 
output
int(-(x*(a - x))/((-x^2*(a - x))^(2/3)*(a^2*d + x^2*(d - 1) - 2*a*d*x)), x 
)