3.28.29 \(\int \frac {1}{(-b+a x^4)^2 \sqrt [4]{-b x^2+a x^4}} \, dx\) [2729]

3.28.29.1 Optimal result
3.28.29.2 Mathematica [A] (verified)
3.28.29.3 Rubi [F]
3.28.29.4 Maple [N/A]
3.28.29.5 Fricas [F(-1)]
3.28.29.6 Sympy [N/A]
3.28.29.7 Maxima [N/A]
3.28.29.8 Giac [N/A]
3.28.29.9 Mupad [N/A]

3.28.29.1 Optimal result

Integrand size = 28, antiderivative size = 251 \[ \int \frac {1}{\left (-b+a x^4\right )^2 \sqrt [4]{-b x^2+a x^4}} \, dx=\frac {\left (-b-a x^2\right ) \left (-b x^2+a x^4\right )^{3/4}}{4 b^2 (-a+b) x \left (b-a x^4\right )}-\frac {\text {RootSum}\left [a^2-a b-2 a \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-8 a^2 \log (x)+6 a b \log (x)+8 a^2 \log \left (\sqrt [4]{-b x^2+a x^4}-x \text {$\#$1}\right )-6 a b \log \left (\sqrt [4]{-b x^2+a x^4}-x \text {$\#$1}\right )+8 a \log (x) \text {$\#$1}^4-7 b \log (x) \text {$\#$1}^4-8 a \log \left (\sqrt [4]{-b x^2+a x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4+7 b \log \left (\sqrt [4]{-b x^2+a x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4}{a \text {$\#$1}-\text {$\#$1}^5}\&\right ]}{32 (a-b) b^2} \]

output
Unintegrable
 
3.28.29.2 Mathematica [A] (verified)

Time = 0.78 (sec) , antiderivative size = 268, normalized size of antiderivative = 1.07 \[ \int \frac {1}{\left (-b+a x^4\right )^2 \sqrt [4]{-b x^2+a x^4}} \, dx=\frac {\sqrt {x} \left (-8 \sqrt [4]{-b+a x^2} \text {RootSum}\left [a^2-a b-2 a \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-\log \left (\sqrt {x}\right )+\log \left (\sqrt [4]{-b+a x^2}-\sqrt {x} \text {$\#$1}\right )}{\text {$\#$1}}\&\right ]+\frac {\frac {16 \sqrt {x} \left (b^2-a^2 x^4\right )}{-b+a x^4}+b \sqrt [4]{-b+a x^2} \text {RootSum}\left [a^2-a b-2 a \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {2 a \log (x)-4 a \log \left (\sqrt [4]{-b+a x^2}-\sqrt {x} \text {$\#$1}\right )-\log (x) \text {$\#$1}^4+2 \log \left (\sqrt [4]{-b+a x^2}-\sqrt {x} \text {$\#$1}\right ) \text {$\#$1}^4}{a \text {$\#$1}-\text {$\#$1}^5}\&\right ]}{2 (a-b)}\right )}{32 b^2 \sqrt [4]{-b x^2+a x^4}} \]

input
Integrate[1/((-b + a*x^4)^2*(-(b*x^2) + a*x^4)^(1/4)),x]
 
output
(Sqrt[x]*(-8*(-b + a*x^2)^(1/4)*RootSum[a^2 - a*b - 2*a*#1^4 + #1^8 & , (- 
Log[Sqrt[x]] + Log[(-b + a*x^2)^(1/4) - Sqrt[x]*#1])/#1 & ] + ((16*Sqrt[x] 
*(b^2 - a^2*x^4))/(-b + a*x^4) + b*(-b + a*x^2)^(1/4)*RootSum[a^2 - a*b - 
2*a*#1^4 + #1^8 & , (2*a*Log[x] - 4*a*Log[(-b + a*x^2)^(1/4) - Sqrt[x]*#1] 
 - Log[x]*#1^4 + 2*Log[(-b + a*x^2)^(1/4) - Sqrt[x]*#1]*#1^4)/(a*#1 - #1^5 
) & ])/(2*(a - b))))/(32*b^2*(-(b*x^2) + a*x^4)^(1/4))
 
3.28.29.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a x^4-b\right )^2 \sqrt [4]{a x^4-b x^2}} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt [4]{a x^2-b} \int \frac {1}{\sqrt {x} \sqrt [4]{a x^2-b} \left (b-a x^4\right )^2}dx}{\sqrt [4]{a x^4-b x^2}}\)

\(\Big \downarrow \) 1593

\(\displaystyle \frac {2 \sqrt {x} \sqrt [4]{a x^2-b} \int \frac {1}{\sqrt [4]{a x^2-b} \left (b-a x^4\right )^2}d\sqrt {x}}{\sqrt [4]{a x^4-b x^2}}\)

\(\Big \downarrow \) 1770

\(\displaystyle \frac {2 \sqrt {x} \sqrt [4]{a x^2-b} \int \frac {1}{\sqrt [4]{a x^2-b} \left (b-a x^4\right )^2}d\sqrt {x}}{\sqrt [4]{a x^4-b x^2}}\)

input
Int[1/((-b + a*x^4)^2*(-(b*x^2) + a*x^4)^(1/4)),x]
 
output
$Aborted
 

3.28.29.3.1 Defintions of rubi rules used

rule 1593
Int[((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_ 
), x_Symbol] :> With[{k = Denominator[m]}, Simp[k/f   Subst[Int[x^(k*(m + 1 
) - 1)*(d + e*(x^(2*k)/f))^q*(a + c*(x^(4*k)/f))^p, x], x, (f*x)^(1/k)], x] 
] /; FreeQ[{a, c, d, e, f, p, q}, x] && FractionQ[m] && IntegerQ[p]
 

rule 1770
Int[((d_) + (e_.)*(x_)^(n_))^(q_)*((a_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] 
 :> Unintegrable[(d + e*x^n)^q*(a + c*x^(2*n))^p, x] /; FreeQ[{a, c, d, e, 
n, p, q}, x] && EqQ[n2, 2*n]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 
3.28.29.4 Maple [N/A]

Time = 0.69 (sec) , antiderivative size = 238, normalized size of antiderivative = 0.95

method result size
pseudoelliptic \(\frac {-\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-2 a \,\textit {\_Z}^{4}+a^{2}-a b \right )}{\sum }\frac {\left (8 a \,\textit {\_R}^{4}-7 \textit {\_R}^{4} b -8 a^{2}+6 a b \right ) \ln \left (\frac {-\textit {\_R} x +\left (x^{2} \left (a \,x^{2}-b \right )\right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R} \left (\textit {\_R}^{4}-a \right )}\right ) a \,x^{5}-8 a \left (x^{2} \left (a \,x^{2}-b \right )\right )^{\frac {3}{4}} x^{2}-8 b \left (x^{2} \left (a \,x^{2}-b \right )\right )^{\frac {3}{4}}+\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-2 a \,\textit {\_Z}^{4}+a^{2}-a b \right )}{\sum }\frac {\left (8 a \,\textit {\_R}^{4}-7 \textit {\_R}^{4} b -8 a^{2}+6 a b \right ) \ln \left (\frac {-\textit {\_R} x +\left (x^{2} \left (a \,x^{2}-b \right )\right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R} \left (\textit {\_R}^{4}-a \right )}\right ) b x}{32 \left (a \,x^{4}-b \right ) \left (a -b \right ) b^{2} x}\) \(238\)

input
int(1/(a*x^4-b)^2/(a*x^4-b*x^2)^(1/4),x,method=_RETURNVERBOSE)
 
output
1/32*(-sum(1/_R*(8*_R^4*a-7*_R^4*b-8*a^2+6*a*b)*ln((-_R*x+(x^2*(a*x^2-b))^ 
(1/4))/x)/(_R^4-a),_R=RootOf(_Z^8-2*_Z^4*a+a^2-a*b))*a*x^5-8*a*(x^2*(a*x^2 
-b))^(3/4)*x^2-8*b*(x^2*(a*x^2-b))^(3/4)+sum(1/_R*(8*_R^4*a-7*_R^4*b-8*a^2 
+6*a*b)*ln((-_R*x+(x^2*(a*x^2-b))^(1/4))/x)/(_R^4-a),_R=RootOf(_Z^8-2*_Z^4 
*a+a^2-a*b))*b*x)/(a*x^4-b)/(a-b)/b^2/x
 
3.28.29.5 Fricas [F(-1)]

Timed out. \[ \int \frac {1}{\left (-b+a x^4\right )^2 \sqrt [4]{-b x^2+a x^4}} \, dx=\text {Timed out} \]

input
integrate(1/(a*x^4-b)^2/(a*x^4-b*x^2)^(1/4),x, algorithm="fricas")
 
output
Timed out
 
3.28.29.6 Sympy [N/A]

Not integrable

Time = 9.62 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.10 \[ \int \frac {1}{\left (-b+a x^4\right )^2 \sqrt [4]{-b x^2+a x^4}} \, dx=\int \frac {1}{\sqrt [4]{x^{2} \left (a x^{2} - b\right )} \left (a x^{4} - b\right )^{2}}\, dx \]

input
integrate(1/(a*x**4-b)**2/(a*x**4-b*x**2)**(1/4),x)
 
output
Integral(1/((x**2*(a*x**2 - b))**(1/4)*(a*x**4 - b)**2), x)
 
3.28.29.7 Maxima [N/A]

Not integrable

Time = 0.22 (sec) , antiderivative size = 28, normalized size of antiderivative = 0.11 \[ \int \frac {1}{\left (-b+a x^4\right )^2 \sqrt [4]{-b x^2+a x^4}} \, dx=\int { \frac {1}{{\left (a x^{4} - b x^{2}\right )}^{\frac {1}{4}} {\left (a x^{4} - b\right )}^{2}} \,d x } \]

input
integrate(1/(a*x^4-b)^2/(a*x^4-b*x^2)^(1/4),x, algorithm="maxima")
 
output
integrate(1/((a*x^4 - b*x^2)^(1/4)*(a*x^4 - b)^2), x)
 
3.28.29.8 Giac [N/A]

Not integrable

Time = 0.93 (sec) , antiderivative size = 28, normalized size of antiderivative = 0.11 \[ \int \frac {1}{\left (-b+a x^4\right )^2 \sqrt [4]{-b x^2+a x^4}} \, dx=\int { \frac {1}{{\left (a x^{4} - b x^{2}\right )}^{\frac {1}{4}} {\left (a x^{4} - b\right )}^{2}} \,d x } \]

input
integrate(1/(a*x^4-b)^2/(a*x^4-b*x^2)^(1/4),x, algorithm="giac")
 
output
integrate(1/((a*x^4 - b*x^2)^(1/4)*(a*x^4 - b)^2), x)
 
3.28.29.9 Mupad [N/A]

Not integrable

Time = 6.70 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.11 \[ \int \frac {1}{\left (-b+a x^4\right )^2 \sqrt [4]{-b x^2+a x^4}} \, dx=\int \frac {1}{{\left (b-a\,x^4\right )}^2\,{\left (a\,x^4-b\,x^2\right )}^{1/4}} \,d x \]

input
int(1/((b - a*x^4)^2*(a*x^4 - b*x^2)^(1/4)),x)
 
output
int(1/((b - a*x^4)^2*(a*x^4 - b*x^2)^(1/4)), x)