3.29.8 \(\int \frac {(4+x^3) (1+x^3+x^4)}{\sqrt [4]{1+x^3} (1+2 x^3+x^6+x^8)} \, dx\) [2808]

3.29.8.1 Optimal result
3.29.8.2 Mathematica [A] (verified)
3.29.8.3 Rubi [F]
3.29.8.4 Maple [C] (warning: unable to verify)
3.29.8.5 Fricas [C] (verification not implemented)
3.29.8.6 Sympy [F]
3.29.8.7 Maxima [F]
3.29.8.8 Giac [F]
3.29.8.9 Mupad [F(-1)]

3.29.8.1 Optimal result

Integrand size = 38, antiderivative size = 275 \[ \int \frac {\left (4+x^3\right ) \left (1+x^3+x^4\right )}{\sqrt [4]{1+x^3} \left (1+2 x^3+x^6+x^8\right )} \, dx=-\sqrt {\frac {1}{2} \left (2+\sqrt {2}\right )} \arctan \left (\frac {\frac {\sqrt {2-\sqrt {2}} x^2}{-2+\sqrt {2}}-\frac {\sqrt {2-\sqrt {2}} \sqrt {1+x^3}}{-2+\sqrt {2}}}{x \sqrt [4]{1+x^3}}\right )-\sqrt {\frac {1}{2} \left (2-\sqrt {2}\right )} \arctan \left (\frac {-\frac {x^2}{\sqrt {2+\sqrt {2}}}+\frac {\sqrt {1+x^3}}{\sqrt {2+\sqrt {2}}}}{x \sqrt [4]{1+x^3}}\right )+\sqrt {\frac {1}{2} \left (2+\sqrt {2}\right )} \text {arctanh}\left (\frac {\sqrt {2-\sqrt {2}} x \sqrt [4]{1+x^3}}{x^2+\sqrt {1+x^3}}\right )+\sqrt {\frac {1}{2} \left (2-\sqrt {2}\right )} \text {arctanh}\left (\frac {\sqrt {2+\sqrt {2}} x \sqrt [4]{1+x^3}}{x^2+\sqrt {1+x^3}}\right ) \]

output
-1/2*(4+2*2^(1/2))^(1/2)*arctan(((2-2^(1/2))^(1/2)*x^2/(-2+2^(1/2))-(2-2^( 
1/2))^(1/2)*(x^3+1)^(1/2)/(-2+2^(1/2)))/x/(x^3+1)^(1/4))-1/2*(4-2*2^(1/2)) 
^(1/2)*arctan((-x^2/(2+2^(1/2))^(1/2)+(x^3+1)^(1/2)/(2+2^(1/2))^(1/2))/x/( 
x^3+1)^(1/4))+1/2*(4+2*2^(1/2))^(1/2)*arctanh((2-2^(1/2))^(1/2)*x*(x^3+1)^ 
(1/4)/(x^2+(x^3+1)^(1/2)))+1/2*(4-2*2^(1/2))^(1/2)*arctanh((2+2^(1/2))^(1/ 
2)*x*(x^3+1)^(1/4)/(x^2+(x^3+1)^(1/2)))
 
3.29.8.2 Mathematica [A] (verified)

Time = 2.04 (sec) , antiderivative size = 221, normalized size of antiderivative = 0.80 \[ \int \frac {\left (4+x^3\right ) \left (1+x^3+x^4\right )}{\sqrt [4]{1+x^3} \left (1+2 x^3+x^6+x^8\right )} \, dx=\frac {-\sqrt {2-\sqrt {2}} \arctan \left (\frac {\sqrt {1-\frac {1}{\sqrt {2}}} \left (-x^2+\sqrt {1+x^3}\right )}{x \sqrt [4]{1+x^3}}\right )-\sqrt {2+\sqrt {2}} \arctan \left (\frac {\sqrt {1+\frac {1}{\sqrt {2}}} \left (-x^2+\sqrt {1+x^3}\right )}{x \sqrt [4]{1+x^3}}\right )+\sqrt {2+\sqrt {2}} \text {arctanh}\left (\frac {\sqrt {2-\sqrt {2}} x \sqrt [4]{1+x^3}}{x^2+\sqrt {1+x^3}}\right )+\sqrt {2-\sqrt {2}} \text {arctanh}\left (\frac {\sqrt {2+\sqrt {2}} x \sqrt [4]{1+x^3}}{x^2+\sqrt {1+x^3}}\right )}{\sqrt {2}} \]

input
Integrate[((4 + x^3)*(1 + x^3 + x^4))/((1 + x^3)^(1/4)*(1 + 2*x^3 + x^6 + 
x^8)),x]
 
output
(-(Sqrt[2 - Sqrt[2]]*ArcTan[(Sqrt[1 - 1/Sqrt[2]]*(-x^2 + Sqrt[1 + x^3]))/( 
x*(1 + x^3)^(1/4))]) - Sqrt[2 + Sqrt[2]]*ArcTan[(Sqrt[1 + 1/Sqrt[2]]*(-x^2 
 + Sqrt[1 + x^3]))/(x*(1 + x^3)^(1/4))] + Sqrt[2 + Sqrt[2]]*ArcTanh[(Sqrt[ 
2 - Sqrt[2]]*x*(1 + x^3)^(1/4))/(x^2 + Sqrt[1 + x^3])] + Sqrt[2 - Sqrt[2]] 
*ArcTanh[(Sqrt[2 + Sqrt[2]]*x*(1 + x^3)^(1/4))/(x^2 + Sqrt[1 + x^3])])/Sqr 
t[2]
 
3.29.8.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^3+4\right ) \left (x^4+x^3+1\right )}{\sqrt [4]{x^3+1} \left (x^8+x^6+2 x^3+1\right )} \, dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (\frac {x^6}{\sqrt [4]{x^3+1} \left (x^8+x^6+2 x^3+1\right )}+\frac {5 x^3}{\sqrt [4]{x^3+1} \left (x^8+x^6+2 x^3+1\right )}+\frac {4}{\sqrt [4]{x^3+1} \left (x^8+x^6+2 x^3+1\right )}+\frac {x^7}{\sqrt [4]{x^3+1} \left (x^8+x^6+2 x^3+1\right )}+\frac {4 x^4}{\sqrt [4]{x^3+1} \left (x^8+x^6+2 x^3+1\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle 4 \int \frac {1}{\sqrt [4]{x^3+1} \left (x^8+x^6+2 x^3+1\right )}dx+5 \int \frac {x^3}{\sqrt [4]{x^3+1} \left (x^8+x^6+2 x^3+1\right )}dx+\int \frac {x^6}{\sqrt [4]{x^3+1} \left (x^8+x^6+2 x^3+1\right )}dx+\int \frac {x^7}{\sqrt [4]{x^3+1} \left (x^8+x^6+2 x^3+1\right )}dx+4 \int \frac {x^4}{\sqrt [4]{x^3+1} \left (x^8+x^6+2 x^3+1\right )}dx\)

input
Int[((4 + x^3)*(1 + x^3 + x^4))/((1 + x^3)^(1/4)*(1 + 2*x^3 + x^6 + x^8)), 
x]
 
output
$Aborted
 

3.29.8.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.29.8.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 7.16 (sec) , antiderivative size = 693, normalized size of antiderivative = 2.52

method result size
trager \(\text {Expression too large to display}\) \(693\)

input
int((x^3+4)*(x^4+x^3+1)/(x^3+1)^(1/4)/(x^8+x^6+2*x^3+1),x,method=_RETURNVE 
RBOSE)
 
output
-1/16*RootOf(_Z^8+16)^7*ln(-(RootOf(_Z^8+16)^11*x^4+4*RootOf(_Z^8+16)^7*x^ 
4+16*RootOf(_Z^8+16)^6*(x^3+1)^(1/4)*x^3-4*RootOf(_Z^8+16)^7*x^3+16*(x^3+1 
)^(1/2)*RootOf(_Z^8+16)^5*x^2-4*RootOf(_Z^8+16)^7-16*RootOf(_Z^8+16)^3*x^3 
+64*(x^3+1)^(1/2)*RootOf(_Z^8+16)*x^2+128*(x^3+1)^(3/4)*x-16*RootOf(_Z^8+1 
6)^3)/(RootOf(_Z^8+16)^4*x^4+4*x^3+4))-1/8*RootOf(_Z^8+16)^5*ln(-(-RootOf( 
_Z^8+16)^9*x^4-4*(x^3+1)^(1/2)*RootOf(_Z^8+16)^7*x^2+4*RootOf(_Z^8+16)^5*x 
^4-4*RootOf(_Z^8+16)^5*x^3+16*(x^3+1)^(1/2)*RootOf(_Z^8+16)^3*x^2+32*(x^3+ 
1)^(1/4)*RootOf(_Z^8+16)^2*x^3-4*RootOf(_Z^8+16)^5+64*(x^3+1)^(3/4)*x+16*x 
^3*RootOf(_Z^8+16)+16*RootOf(_Z^8+16))/(RootOf(_Z^8+16)^4*x^4-4*x^3-4))+1/ 
4*RootOf(_Z^8+16)^3*ln(-(RootOf(_Z^8+16)^11*x^4-4*RootOf(_Z^8+16)^7*x^4-16 
*RootOf(_Z^8+16)^6*(x^3+1)^(1/4)*x^3-4*RootOf(_Z^8+16)^7*x^3-16*(x^3+1)^(1 
/2)*RootOf(_Z^8+16)^5*x^2-4*RootOf(_Z^8+16)^7+16*RootOf(_Z^8+16)^3*x^3+64* 
(x^3+1)^(1/2)*RootOf(_Z^8+16)*x^2+128*(x^3+1)^(3/4)*x+16*RootOf(_Z^8+16)^3 
)/(RootOf(_Z^8+16)^4*x^4+4*x^3+4))+1/2*RootOf(_Z^8+16)*ln(-(RootOf(_Z^8+16 
)^9*x^4-4*(x^3+1)^(1/2)*RootOf(_Z^8+16)^7*x^2+4*RootOf(_Z^8+16)^5*x^4+4*Ro 
otOf(_Z^8+16)^5*x^3-16*(x^3+1)^(1/2)*RootOf(_Z^8+16)^3*x^2-32*(x^3+1)^(1/4 
)*RootOf(_Z^8+16)^2*x^3+4*RootOf(_Z^8+16)^5+64*(x^3+1)^(3/4)*x+16*x^3*Root 
Of(_Z^8+16)+16*RootOf(_Z^8+16))/(RootOf(_Z^8+16)^4*x^4-4*x^3-4))
 
3.29.8.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 47.89 (sec) , antiderivative size = 1537, normalized size of antiderivative = 5.59 \[ \int \frac {\left (4+x^3\right ) \left (1+x^3+x^4\right )}{\sqrt [4]{1+x^3} \left (1+2 x^3+x^6+x^8\right )} \, dx=\text {Too large to display} \]

input
integrate((x^3+4)*(x^4+x^3+1)/(x^3+1)^(1/4)/(x^8+x^6+2*x^3+1),x, algorithm 
="fricas")
 
output
-1/4*sqrt(2)*(-1)^(1/8)*log(8*(2*sqrt(2)*sqrt(x^3 + 1)*((-1)^(7/8)*(x^6 - 
x^5 - x^2) + (-1)^(3/8)*(x^6 + x^5 + x^2)) + 4*(x^5 - I*x^4 - I*x)*(x^3 + 
1)^(3/4) - sqrt(2)*((-1)^(5/8)*(x^8 + 2*x^7 - x^6 + 2*x^4 - 2*x^3 - 1) - ( 
-1)^(1/8)*(x^8 - 2*x^7 - x^6 - 2*x^4 - 2*x^3 - 1)) - 4*((-1)^(1/4)*x^7 - ( 
-1)^(3/4)*(x^6 + x^3))*(x^3 + 1)^(1/4))/(x^8 + x^6 + 2*x^3 + 1)) + 1/4*sqr 
t(2)*(-1)^(1/8)*log(-8*(2*sqrt(2)*sqrt(x^3 + 1)*((-1)^(7/8)*(x^6 - x^5 - x 
^2) + (-1)^(3/8)*(x^6 + x^5 + x^2)) - 4*(x^5 - I*x^4 - I*x)*(x^3 + 1)^(3/4 
) - sqrt(2)*((-1)^(5/8)*(x^8 + 2*x^7 - x^6 + 2*x^4 - 2*x^3 - 1) - (-1)^(1/ 
8)*(x^8 - 2*x^7 - x^6 - 2*x^4 - 2*x^3 - 1)) + 4*((-1)^(1/4)*x^7 - (-1)^(3/ 
4)*(x^6 + x^3))*(x^3 + 1)^(1/4))/(x^8 + x^6 + 2*x^3 + 1)) - 1/4*I*sqrt(2)* 
(-1)^(1/8)*log(-8*(2*sqrt(2)*sqrt(x^3 + 1)*((-1)^(7/8)*(I*x^6 - I*x^5 - I* 
x^2) + (-1)^(3/8)*(I*x^6 + I*x^5 + I*x^2)) - 4*(x^5 - I*x^4 - I*x)*(x^3 + 
1)^(3/4) + sqrt(2)*((-1)^(5/8)*(I*x^8 + 2*I*x^7 - I*x^6 + 2*I*x^4 - 2*I*x^ 
3 - I) + (-1)^(1/8)*(-I*x^8 + 2*I*x^7 + I*x^6 + 2*I*x^4 + 2*I*x^3 + I)) - 
4*((-1)^(1/4)*x^7 - (-1)^(3/4)*(x^6 + x^3))*(x^3 + 1)^(1/4))/(x^8 + x^6 + 
2*x^3 + 1)) + 1/4*I*sqrt(2)*(-1)^(1/8)*log(-8*(2*sqrt(2)*sqrt(x^3 + 1)*((- 
1)^(7/8)*(-I*x^6 + I*x^5 + I*x^2) + (-1)^(3/8)*(-I*x^6 - I*x^5 - I*x^2)) - 
 4*(x^5 - I*x^4 - I*x)*(x^3 + 1)^(3/4) + sqrt(2)*((-1)^(5/8)*(-I*x^8 - 2*I 
*x^7 + I*x^6 - 2*I*x^4 + 2*I*x^3 + I) + (-1)^(1/8)*(I*x^8 - 2*I*x^7 - I*x^ 
6 - 2*I*x^4 - 2*I*x^3 - I)) - 4*((-1)^(1/4)*x^7 - (-1)^(3/4)*(x^6 + x^3...
 
3.29.8.6 Sympy [F]

\[ \int \frac {\left (4+x^3\right ) \left (1+x^3+x^4\right )}{\sqrt [4]{1+x^3} \left (1+2 x^3+x^6+x^8\right )} \, dx=\int \frac {\left (x^{3} + 4\right ) \left (x^{4} + x^{3} + 1\right )}{\sqrt [4]{\left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (x^{8} + x^{6} + 2 x^{3} + 1\right )}\, dx \]

input
integrate((x**3+4)*(x**4+x**3+1)/(x**3+1)**(1/4)/(x**8+x**6+2*x**3+1),x)
 
output
Integral((x**3 + 4)*(x**4 + x**3 + 1)/(((x + 1)*(x**2 - x + 1))**(1/4)*(x* 
*8 + x**6 + 2*x**3 + 1)), x)
 
3.29.8.7 Maxima [F]

\[ \int \frac {\left (4+x^3\right ) \left (1+x^3+x^4\right )}{\sqrt [4]{1+x^3} \left (1+2 x^3+x^6+x^8\right )} \, dx=\int { \frac {{\left (x^{4} + x^{3} + 1\right )} {\left (x^{3} + 4\right )}}{{\left (x^{8} + x^{6} + 2 \, x^{3} + 1\right )} {\left (x^{3} + 1\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate((x^3+4)*(x^4+x^3+1)/(x^3+1)^(1/4)/(x^8+x^6+2*x^3+1),x, algorithm 
="maxima")
 
output
integrate((x^4 + x^3 + 1)*(x^3 + 4)/((x^8 + x^6 + 2*x^3 + 1)*(x^3 + 1)^(1/ 
4)), x)
 
3.29.8.8 Giac [F]

\[ \int \frac {\left (4+x^3\right ) \left (1+x^3+x^4\right )}{\sqrt [4]{1+x^3} \left (1+2 x^3+x^6+x^8\right )} \, dx=\int { \frac {{\left (x^{4} + x^{3} + 1\right )} {\left (x^{3} + 4\right )}}{{\left (x^{8} + x^{6} + 2 \, x^{3} + 1\right )} {\left (x^{3} + 1\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate((x^3+4)*(x^4+x^3+1)/(x^3+1)^(1/4)/(x^8+x^6+2*x^3+1),x, algorithm 
="giac")
 
output
integrate((x^4 + x^3 + 1)*(x^3 + 4)/((x^8 + x^6 + 2*x^3 + 1)*(x^3 + 1)^(1/ 
4)), x)
 
3.29.8.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (4+x^3\right ) \left (1+x^3+x^4\right )}{\sqrt [4]{1+x^3} \left (1+2 x^3+x^6+x^8\right )} \, dx=\int \frac {\left (x^3+4\right )\,\left (x^4+x^3+1\right )}{{\left (x^3+1\right )}^{1/4}\,\left (x^8+x^6+2\,x^3+1\right )} \,d x \]

input
int(((x^3 + 4)*(x^3 + x^4 + 1))/((x^3 + 1)^(1/4)*(2*x^3 + x^6 + x^8 + 1)), 
x)
 
output
int(((x^3 + 4)*(x^3 + x^4 + 1))/((x^3 + 1)^(1/4)*(2*x^3 + x^6 + x^8 + 1)), 
 x)