3.29.19 \(\int \frac {\sqrt [4]{-b x^3+a x^4}}{-d-2 c x+x^2} \, dx\) [2819]

3.29.19.1 Optimal result
3.29.19.2 Mathematica [A] (verified)
3.29.19.3 Rubi [B] (verified)
3.29.19.4 Maple [N/A] (verified)
3.29.19.5 Fricas [C] (verification not implemented)
3.29.19.6 Sympy [N/A]
3.29.19.7 Maxima [N/A]
3.29.19.8 Giac [F(-1)]
3.29.19.9 Mupad [N/A]

3.29.19.1 Optimal result

Integrand size = 30, antiderivative size = 279 \[ \int \frac {\sqrt [4]{-b x^3+a x^4}}{-d-2 c x+x^2} \, dx=-2 \sqrt [4]{a} \arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{-b x^3+a x^4}}\right )+2 \sqrt [4]{a} \text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{-b x^3+a x^4}}\right )+\frac {1}{2} \text {RootSum}\left [b^2-2 a b c-a^2 d+2 b c \text {$\#$1}^4+2 a d \text {$\#$1}^4-d \text {$\#$1}^8\&,\frac {b^2 \log (x)-2 a b c \log (x)-a^2 d \log (x)-b^2 \log \left (\sqrt [4]{-b x^3+a x^4}-x \text {$\#$1}\right )+2 a b c \log \left (\sqrt [4]{-b x^3+a x^4}-x \text {$\#$1}\right )+a^2 d \log \left (\sqrt [4]{-b x^3+a x^4}-x \text {$\#$1}\right )+a d \log (x) \text {$\#$1}^4-a d \log \left (\sqrt [4]{-b x^3+a x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4}{b c \text {$\#$1}^3+a d \text {$\#$1}^3-d \text {$\#$1}^7}\&\right ] \]

output
Unintegrable
 
3.29.19.2 Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 302, normalized size of antiderivative = 1.08 \[ \int \frac {\sqrt [4]{-b x^3+a x^4}}{-d-2 c x+x^2} \, dx=-\frac {x^{9/4} (-b+a x)^{3/4} \left (16 \sqrt [4]{a} \left (\arctan \left (\frac {\sqrt [4]{a} \sqrt [4]{x}}{\sqrt [4]{-b+a x}}\right )-\text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt [4]{x}}{\sqrt [4]{-b+a x}}\right )\right )+\text {RootSum}\left [b^2-2 a b c-a^2 d+2 b c \text {$\#$1}^4+2 a d \text {$\#$1}^4-d \text {$\#$1}^8\&,\frac {b^2 \log (x)-2 a b c \log (x)-a^2 d \log (x)-4 b^2 \log \left (\sqrt [4]{-b+a x}-\sqrt [4]{x} \text {$\#$1}\right )+8 a b c \log \left (\sqrt [4]{-b+a x}-\sqrt [4]{x} \text {$\#$1}\right )+4 a^2 d \log \left (\sqrt [4]{-b+a x}-\sqrt [4]{x} \text {$\#$1}\right )+a d \log (x) \text {$\#$1}^4-4 a d \log \left (\sqrt [4]{-b+a x}-\sqrt [4]{x} \text {$\#$1}\right ) \text {$\#$1}^4}{-b c \text {$\#$1}^3-a d \text {$\#$1}^3+d \text {$\#$1}^7}\&\right ]\right )}{8 \left (x^3 (-b+a x)\right )^{3/4}} \]

input
Integrate[(-(b*x^3) + a*x^4)^(1/4)/(-d - 2*c*x + x^2),x]
 
output
-1/8*(x^(9/4)*(-b + a*x)^(3/4)*(16*a^(1/4)*(ArcTan[(a^(1/4)*x^(1/4))/(-b + 
 a*x)^(1/4)] - ArcTanh[(a^(1/4)*x^(1/4))/(-b + a*x)^(1/4)]) + RootSum[b^2 
- 2*a*b*c - a^2*d + 2*b*c*#1^4 + 2*a*d*#1^4 - d*#1^8 & , (b^2*Log[x] - 2*a 
*b*c*Log[x] - a^2*d*Log[x] - 4*b^2*Log[(-b + a*x)^(1/4) - x^(1/4)*#1] + 8* 
a*b*c*Log[(-b + a*x)^(1/4) - x^(1/4)*#1] + 4*a^2*d*Log[(-b + a*x)^(1/4) - 
x^(1/4)*#1] + a*d*Log[x]*#1^4 - 4*a*d*Log[(-b + a*x)^(1/4) - x^(1/4)*#1]*# 
1^4)/(-(b*c*#1^3) - a*d*#1^3 + d*#1^7) & ]))/(x^3*(-b + a*x))^(3/4)
 
3.29.19.3 Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(986\) vs. \(2(279)=558\).

Time = 2.50 (sec) , antiderivative size = 986, normalized size of antiderivative = 3.53, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {2467, 25, 1202, 25, 73, 854, 827, 216, 219, 2035, 7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [4]{a x^4-b x^3}}{-2 c x-d+x^2} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt [4]{a x^4-b x^3} \int -\frac {x^{3/4} \sqrt [4]{a x-b}}{-x^2+2 c x+d}dx}{x^{3/4} \sqrt [4]{a x-b}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt [4]{a x^4-b x^3} \int \frac {x^{3/4} \sqrt [4]{a x-b}}{-x^2+2 c x+d}dx}{x^{3/4} \sqrt [4]{a x-b}}\)

\(\Big \downarrow \) 1202

\(\displaystyle -\frac {\sqrt [4]{a x^4-b x^3} \left (-\int -\frac {a d-(b-2 a c) x}{\sqrt [4]{x} (a x-b)^{3/4} \left (-x^2+2 c x+d\right )}dx-a \int \frac {1}{\sqrt [4]{x} (a x-b)^{3/4}}dx\right )}{x^{3/4} \sqrt [4]{a x-b}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt [4]{a x^4-b x^3} \left (\int \frac {a d-(b-2 a c) x}{\sqrt [4]{x} (a x-b)^{3/4} \left (-x^2+2 c x+d\right )}dx-a \int \frac {1}{\sqrt [4]{x} (a x-b)^{3/4}}dx\right )}{x^{3/4} \sqrt [4]{a x-b}}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {\sqrt [4]{a x^4-b x^3} \left (\int \frac {a d-(b-2 a c) x}{\sqrt [4]{x} (a x-b)^{3/4} \left (-x^2+2 c x+d\right )}dx-4 a \int \frac {\sqrt {x}}{(a x-b)^{3/4}}d\sqrt [4]{x}\right )}{x^{3/4} \sqrt [4]{a x-b}}\)

\(\Big \downarrow \) 854

\(\displaystyle -\frac {\sqrt [4]{a x^4-b x^3} \left (\int \frac {a d-(b-2 a c) x}{\sqrt [4]{x} (a x-b)^{3/4} \left (-x^2+2 c x+d\right )}dx-4 a \int \frac {\sqrt {x}}{1-a x}d\frac {\sqrt [4]{x}}{\sqrt [4]{a x-b}}\right )}{x^{3/4} \sqrt [4]{a x-b}}\)

\(\Big \downarrow \) 827

\(\displaystyle -\frac {\sqrt [4]{a x^4-b x^3} \left (\int \frac {a d-(b-2 a c) x}{\sqrt [4]{x} (a x-b)^{3/4} \left (-x^2+2 c x+d\right )}dx-4 a \left (\frac {\int \frac {1}{1-\sqrt {a} \sqrt {x}}d\frac {\sqrt [4]{x}}{\sqrt [4]{a x-b}}}{2 \sqrt {a}}-\frac {\int \frac {1}{\sqrt {a} \sqrt {x}+1}d\frac {\sqrt [4]{x}}{\sqrt [4]{a x-b}}}{2 \sqrt {a}}\right )\right )}{x^{3/4} \sqrt [4]{a x-b}}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {\sqrt [4]{a x^4-b x^3} \left (\int \frac {a d-(b-2 a c) x}{\sqrt [4]{x} (a x-b)^{3/4} \left (-x^2+2 c x+d\right )}dx-4 a \left (\frac {\int \frac {1}{1-\sqrt {a} \sqrt {x}}d\frac {\sqrt [4]{x}}{\sqrt [4]{a x-b}}}{2 \sqrt {a}}-\frac {\arctan \left (\frac {\sqrt [4]{a} \sqrt [4]{x}}{\sqrt [4]{a x-b}}\right )}{2 a^{3/4}}\right )\right )}{x^{3/4} \sqrt [4]{a x-b}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\sqrt [4]{a x^4-b x^3} \left (\int \frac {a d-(b-2 a c) x}{\sqrt [4]{x} (a x-b)^{3/4} \left (-x^2+2 c x+d\right )}dx-4 a \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt [4]{x}}{\sqrt [4]{a x-b}}\right )}{2 a^{3/4}}-\frac {\arctan \left (\frac {\sqrt [4]{a} \sqrt [4]{x}}{\sqrt [4]{a x-b}}\right )}{2 a^{3/4}}\right )\right )}{x^{3/4} \sqrt [4]{a x-b}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {\sqrt [4]{a x^4-b x^3} \left (4 \int \frac {\sqrt {x} (a d-(b-2 a c) x)}{(a x-b)^{3/4} \left (-x^2+2 c x+d\right )}d\sqrt [4]{x}-4 a \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt [4]{x}}{\sqrt [4]{a x-b}}\right )}{2 a^{3/4}}-\frac {\arctan \left (\frac {\sqrt [4]{a} \sqrt [4]{x}}{\sqrt [4]{a x-b}}\right )}{2 a^{3/4}}\right )\right )}{x^{3/4} \sqrt [4]{a x-b}}\)

\(\Big \downarrow \) 7279

\(\displaystyle -\frac {\sqrt [4]{a x^4-b x^3} \left (4 \int \left (\frac {a d \sqrt {x}}{(a x-b)^{3/4} \left (-x^2+2 c x+d\right )}-\frac {(b-2 a c) x^{3/2}}{(a x-b)^{3/4} \left (-x^2+2 c x+d\right )}\right )d\sqrt [4]{x}-4 a \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt [4]{x}}{\sqrt [4]{a x-b}}\right )}{2 a^{3/4}}-\frac {\arctan \left (\frac {\sqrt [4]{a} \sqrt [4]{x}}{\sqrt [4]{a x-b}}\right )}{2 a^{3/4}}\right )\right )}{x^{3/4} \sqrt [4]{a x-b}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\sqrt [4]{a x^4-b x^3} \left (4 \left (-\frac {(b-2 a c) \left (\sqrt {c^2+d}-c\right )^{3/4} \arctan \left (\frac {\sqrt [4]{b-a \left (c-\sqrt {c^2+d}\right )} \sqrt [4]{x}}{\sqrt [4]{\sqrt {c^2+d}-c} \sqrt [4]{a x-b}}\right )}{4 \sqrt {c^2+d} \left (b-a \left (c-\sqrt {c^2+d}\right )\right )^{3/4}}-\frac {a d \arctan \left (\frac {\sqrt [4]{b-a \left (c-\sqrt {c^2+d}\right )} \sqrt [4]{x}}{\sqrt [4]{\sqrt {c^2+d}-c} \sqrt [4]{a x-b}}\right )}{4 \sqrt {c^2+d} \sqrt [4]{\sqrt {c^2+d}-c} \left (b-a \left (c-\sqrt {c^2+d}\right )\right )^{3/4}}+\frac {(b-2 a c) \left (c+\sqrt {c^2+d}\right )^{3/4} \arctan \left (\frac {\sqrt [4]{a \left (c+\sqrt {c^2+d}\right )-b} \sqrt [4]{x}}{\sqrt [4]{c+\sqrt {c^2+d}} \sqrt [4]{a x-b}}\right )}{4 \sqrt {c^2+d} \left (a \left (c+\sqrt {c^2+d}\right )-b\right )^{3/4}}-\frac {a d \arctan \left (\frac {\sqrt [4]{a \left (c+\sqrt {c^2+d}\right )-b} \sqrt [4]{x}}{\sqrt [4]{c+\sqrt {c^2+d}} \sqrt [4]{a x-b}}\right )}{4 \sqrt {c^2+d} \sqrt [4]{c+\sqrt {c^2+d}} \left (a \left (c+\sqrt {c^2+d}\right )-b\right )^{3/4}}+\frac {(b-2 a c) \left (\sqrt {c^2+d}-c\right )^{3/4} \text {arctanh}\left (\frac {\sqrt [4]{b-a \left (c-\sqrt {c^2+d}\right )} \sqrt [4]{x}}{\sqrt [4]{\sqrt {c^2+d}-c} \sqrt [4]{a x-b}}\right )}{4 \sqrt {c^2+d} \left (b-a \left (c-\sqrt {c^2+d}\right )\right )^{3/4}}+\frac {a d \text {arctanh}\left (\frac {\sqrt [4]{b-a \left (c-\sqrt {c^2+d}\right )} \sqrt [4]{x}}{\sqrt [4]{\sqrt {c^2+d}-c} \sqrt [4]{a x-b}}\right )}{4 \sqrt {c^2+d} \sqrt [4]{\sqrt {c^2+d}-c} \left (b-a \left (c-\sqrt {c^2+d}\right )\right )^{3/4}}-\frac {(b-2 a c) \left (c+\sqrt {c^2+d}\right )^{3/4} \text {arctanh}\left (\frac {\sqrt [4]{a \left (c+\sqrt {c^2+d}\right )-b} \sqrt [4]{x}}{\sqrt [4]{c+\sqrt {c^2+d}} \sqrt [4]{a x-b}}\right )}{4 \sqrt {c^2+d} \left (a \left (c+\sqrt {c^2+d}\right )-b\right )^{3/4}}+\frac {a d \text {arctanh}\left (\frac {\sqrt [4]{a \left (c+\sqrt {c^2+d}\right )-b} \sqrt [4]{x}}{\sqrt [4]{c+\sqrt {c^2+d}} \sqrt [4]{a x-b}}\right )}{4 \sqrt {c^2+d} \sqrt [4]{c+\sqrt {c^2+d}} \left (a \left (c+\sqrt {c^2+d}\right )-b\right )^{3/4}}\right )-4 a \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt [4]{x}}{\sqrt [4]{a x-b}}\right )}{2 a^{3/4}}-\frac {\arctan \left (\frac {\sqrt [4]{a} \sqrt [4]{x}}{\sqrt [4]{a x-b}}\right )}{2 a^{3/4}}\right )\right )}{x^{3/4} \sqrt [4]{a x-b}}\)

input
Int[(-(b*x^3) + a*x^4)^(1/4)/(-d - 2*c*x + x^2),x]
 
output
-(((-(b*x^3) + a*x^4)^(1/4)*(-4*a*(-1/2*ArcTan[(a^(1/4)*x^(1/4))/(-b + a*x 
)^(1/4)]/a^(3/4) + ArcTanh[(a^(1/4)*x^(1/4))/(-b + a*x)^(1/4)]/(2*a^(3/4)) 
) + 4*(-1/4*(a*d*ArcTan[((b - a*(c - Sqrt[c^2 + d]))^(1/4)*x^(1/4))/((-c + 
 Sqrt[c^2 + d])^(1/4)*(-b + a*x)^(1/4))])/(Sqrt[c^2 + d]*(-c + Sqrt[c^2 + 
d])^(1/4)*(b - a*(c - Sqrt[c^2 + d]))^(3/4)) - ((b - 2*a*c)*(-c + Sqrt[c^2 
 + d])^(3/4)*ArcTan[((b - a*(c - Sqrt[c^2 + d]))^(1/4)*x^(1/4))/((-c + Sqr 
t[c^2 + d])^(1/4)*(-b + a*x)^(1/4))])/(4*Sqrt[c^2 + d]*(b - a*(c - Sqrt[c^ 
2 + d]))^(3/4)) - (a*d*ArcTan[((-b + a*(c + Sqrt[c^2 + d]))^(1/4)*x^(1/4)) 
/((c + Sqrt[c^2 + d])^(1/4)*(-b + a*x)^(1/4))])/(4*Sqrt[c^2 + d]*(c + Sqrt 
[c^2 + d])^(1/4)*(-b + a*(c + Sqrt[c^2 + d]))^(3/4)) + ((b - 2*a*c)*(c + S 
qrt[c^2 + d])^(3/4)*ArcTan[((-b + a*(c + Sqrt[c^2 + d]))^(1/4)*x^(1/4))/(( 
c + Sqrt[c^2 + d])^(1/4)*(-b + a*x)^(1/4))])/(4*Sqrt[c^2 + d]*(-b + a*(c + 
 Sqrt[c^2 + d]))^(3/4)) + (a*d*ArcTanh[((b - a*(c - Sqrt[c^2 + d]))^(1/4)* 
x^(1/4))/((-c + Sqrt[c^2 + d])^(1/4)*(-b + a*x)^(1/4))])/(4*Sqrt[c^2 + d]* 
(-c + Sqrt[c^2 + d])^(1/4)*(b - a*(c - Sqrt[c^2 + d]))^(3/4)) + ((b - 2*a* 
c)*(-c + Sqrt[c^2 + d])^(3/4)*ArcTanh[((b - a*(c - Sqrt[c^2 + d]))^(1/4)*x 
^(1/4))/((-c + Sqrt[c^2 + d])^(1/4)*(-b + a*x)^(1/4))])/(4*Sqrt[c^2 + d]*( 
b - a*(c - Sqrt[c^2 + d]))^(3/4)) + (a*d*ArcTanh[((-b + a*(c + Sqrt[c^2 + 
d]))^(1/4)*x^(1/4))/((c + Sqrt[c^2 + d])^(1/4)*(-b + a*x)^(1/4))])/(4*Sqrt 
[c^2 + d]*(c + Sqrt[c^2 + d])^(1/4)*(-b + a*(c + Sqrt[c^2 + d]))^(3/4))...
 

3.29.19.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 854
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^(p + (m + 
 1)/n)   Subst[Int[x^m/(1 - b*x^n)^(p + (m + 1)/n + 1), x], x, x/(a + b*x^n 
)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, - 
2^(-1)] && IntegersQ[m, p + (m + 1)/n]
 

rule 1202
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_.) + (b_.)*(x 
_) + (c_.)*(x_)^2), x_Symbol] :> Simp[e*(g/c)   Int[(d + e*x)^(m - 1)*(f + 
g*x)^(n - 1), x], x] + Simp[1/c   Int[Simp[c*d*f - a*e*g + (c*e*f + c*d*g - 
 b*e*g)*x, x]*(d + e*x)^(m - 1)*((f + g*x)^(n - 1)/(a + b*x + c*x^2)), x], 
x] /; FreeQ[{a, b, c, d, e, f, g}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] && 
GtQ[m, 0] && GtQ[n, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
3.29.19.4 Maple [N/A] (verified)

Time = 0.37 (sec) , antiderivative size = 179, normalized size of antiderivative = 0.64

method result size
pseudoelliptic \(a^{\frac {1}{4}} \ln \left (\frac {a^{\frac {1}{4}} x +\left (x^{3} \left (a x -b \right )\right )^{\frac {1}{4}}}{-a^{\frac {1}{4}} x +\left (x^{3} \left (a x -b \right )\right )^{\frac {1}{4}}}\right )+2 a^{\frac {1}{4}} \arctan \left (\frac {\left (x^{3} \left (a x -b \right )\right )^{\frac {1}{4}}}{a^{\frac {1}{4}} x}\right )+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (d \,\textit {\_Z}^{8}+\left (-2 a d -2 b c \right ) \textit {\_Z}^{4}+a^{2} d +2 a b c -b^{2}\right )}{\sum }\frac {\left (\textit {\_R}^{4} a d -a^{2} d -2 a b c +b^{2}\right ) \ln \left (\frac {-\textit {\_R} x +\left (x^{3} \left (a x -b \right )\right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R}^{3} \left (\textit {\_R}^{4} d -a d -b c \right )}\right )}{2}\) \(179\)

input
int((a*x^4-b*x^3)^(1/4)/(-2*c*x+x^2-d),x,method=_RETURNVERBOSE)
 
output
a^(1/4)*ln((a^(1/4)*x+(x^3*(a*x-b))^(1/4))/(-a^(1/4)*x+(x^3*(a*x-b))^(1/4) 
))+2*a^(1/4)*arctan(1/a^(1/4)/x*(x^3*(a*x-b))^(1/4))+1/2*sum((_R^4*a*d-a^2 
*d-2*a*b*c+b^2)*ln((-_R*x+(x^3*(a*x-b))^(1/4))/x)/_R^3/(_R^4*d-a*d-b*c),_R 
=RootOf(d*_Z^8+(-2*a*d-2*b*c)*_Z^4+a^2*d+2*a*b*c-b^2))
 
3.29.19.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 2.28 (sec) , antiderivative size = 4415, normalized size of antiderivative = 15.82 \[ \int \frac {\sqrt [4]{-b x^3+a x^4}}{-d-2 c x+x^2} \, dx=\text {Too large to display} \]

input
integrate((a*x^4-b*x^3)^(1/4)/(-2*c*x+x^2-d),x, algorithm="fricas")
 
output
1/2*sqrt(-sqrt((8*a*c^4 - 4*b*c^3 + a*d^2 + (8*a*c^2 - 3*b*c)*d + (c^4 + 2 
*c^2*d + d^2)*sqrt((64*a^2*c^6 - 64*a*b*c^5 + 16*b^2*c^4 + (16*a^2*c^2 - 8 
*a*b*c + b^2)*d^2 + 8*(8*a^2*c^4 - 6*a*b*c^3 + b^2*c^2)*d)/(c^6 + 3*c^4*d 
+ 3*c^2*d^2 + d^3)))/(c^4 + 2*c^2*d + d^2)))*log((((c^5 + 2*c^3*d + c*d^2) 
*x*sqrt((64*a^2*c^6 - 64*a*b*c^5 + 16*b^2*c^4 + (16*a^2*c^2 - 8*a*b*c + b^ 
2)*d^2 + 8*(8*a^2*c^4 - 6*a*b*c^3 + b^2*c^2)*d)/(c^6 + 3*c^4*d + 3*c^2*d^2 
 + d^3)) - (8*a*c^5 - 4*b*c^4 + (4*a*c - b)*d^2 + (12*a*c^3 - 5*b*c^2)*d)* 
x)*sqrt(-sqrt((8*a*c^4 - 4*b*c^3 + a*d^2 + (8*a*c^2 - 3*b*c)*d + (c^4 + 2* 
c^2*d + d^2)*sqrt((64*a^2*c^6 - 64*a*b*c^5 + 16*b^2*c^4 + (16*a^2*c^2 - 8* 
a*b*c + b^2)*d^2 + 8*(8*a^2*c^4 - 6*a*b*c^3 + b^2*c^2)*d)/(c^6 + 3*c^4*d + 
 3*c^2*d^2 + d^3)))/(c^4 + 2*c^2*d + d^2))) + (a*x^4 - b*x^3)^(1/4)*((4*a* 
c - b)*d^2 + 4*(2*a*c^3 - b*c^2)*d))/x) - 1/2*sqrt(-sqrt((8*a*c^4 - 4*b*c^ 
3 + a*d^2 + (8*a*c^2 - 3*b*c)*d + (c^4 + 2*c^2*d + d^2)*sqrt((64*a^2*c^6 - 
 64*a*b*c^5 + 16*b^2*c^4 + (16*a^2*c^2 - 8*a*b*c + b^2)*d^2 + 8*(8*a^2*c^4 
 - 6*a*b*c^3 + b^2*c^2)*d)/(c^6 + 3*c^4*d + 3*c^2*d^2 + d^3)))/(c^4 + 2*c^ 
2*d + d^2)))*log(-(((c^5 + 2*c^3*d + c*d^2)*x*sqrt((64*a^2*c^6 - 64*a*b*c^ 
5 + 16*b^2*c^4 + (16*a^2*c^2 - 8*a*b*c + b^2)*d^2 + 8*(8*a^2*c^4 - 6*a*b*c 
^3 + b^2*c^2)*d)/(c^6 + 3*c^4*d + 3*c^2*d^2 + d^3)) - (8*a*c^5 - 4*b*c^4 + 
 (4*a*c - b)*d^2 + (12*a*c^3 - 5*b*c^2)*d)*x)*sqrt(-sqrt((8*a*c^4 - 4*b*c^ 
3 + a*d^2 + (8*a*c^2 - 3*b*c)*d + (c^4 + 2*c^2*d + d^2)*sqrt((64*a^2*c^...
 
3.29.19.6 Sympy [N/A]

Not integrable

Time = 2.12 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.08 \[ \int \frac {\sqrt [4]{-b x^3+a x^4}}{-d-2 c x+x^2} \, dx=\int \frac {\sqrt [4]{x^{3} \left (a x - b\right )}}{- 2 c x - d + x^{2}}\, dx \]

input
integrate((a*x**4-b*x**3)**(1/4)/(-2*c*x+x**2-d),x)
 
output
Integral((x**3*(a*x - b))**(1/4)/(-2*c*x - d + x**2), x)
 
3.29.19.7 Maxima [N/A]

Not integrable

Time = 0.27 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.11 \[ \int \frac {\sqrt [4]{-b x^3+a x^4}}{-d-2 c x+x^2} \, dx=\int { -\frac {{\left (a x^{4} - b x^{3}\right )}^{\frac {1}{4}}}{2 \, c x - x^{2} + d} \,d x } \]

input
integrate((a*x^4-b*x^3)^(1/4)/(-2*c*x+x^2-d),x, algorithm="maxima")
 
output
-integrate((a*x^4 - b*x^3)^(1/4)/(2*c*x - x^2 + d), x)
 
3.29.19.8 Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt [4]{-b x^3+a x^4}}{-d-2 c x+x^2} \, dx=\text {Timed out} \]

input
integrate((a*x^4-b*x^3)^(1/4)/(-2*c*x+x^2-d),x, algorithm="giac")
 
output
Timed out
 
3.29.19.9 Mupad [N/A]

Not integrable

Time = 0.00 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.11 \[ \int \frac {\sqrt [4]{-b x^3+a x^4}}{-d-2 c x+x^2} \, dx=-\int \frac {{\left (a\,x^4-b\,x^3\right )}^{1/4}}{-x^2+2\,c\,x+d} \,d x \]

input
int(-(a*x^4 - b*x^3)^(1/4)/(d + 2*c*x - x^2),x)
 
output
-int((a*x^4 - b*x^3)^(1/4)/(d + 2*c*x - x^2), x)