3.29.83 \(\int \frac {\sqrt {1+x^4} \sqrt {x^2+\sqrt {1+x^4}}}{-1+x^4} \, dx\) [2883]

3.29.83.1 Optimal result
3.29.83.2 Mathematica [A] (verified)
3.29.83.3 Rubi [F]
3.29.83.4 Maple [F]
3.29.83.5 Fricas [B] (verification not implemented)
3.29.83.6 Sympy [F]
3.29.83.7 Maxima [F]
3.29.83.8 Giac [F]
3.29.83.9 Mupad [F(-1)]

3.29.83.1 Optimal result

Integrand size = 34, antiderivative size = 311 \[ \int \frac {\sqrt {1+x^4} \sqrt {x^2+\sqrt {1+x^4}}}{-1+x^4} \, dx=\sqrt {\frac {1}{2} \left (-1+\sqrt {2}\right )} \arctan \left (\frac {\sqrt {2 \left (-1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2+\sqrt {1+x^4}}\right )-\sqrt {\frac {1}{2} \left (-1+\sqrt {2}\right )} \arctan \left (\frac {\sqrt {2 \left (1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2+\sqrt {1+x^4}}\right )+\sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2+\sqrt {1+x^4}}\right )-\sqrt {\frac {1}{2} \left (1+\sqrt {2}\right )} \text {arctanh}\left (\frac {\sqrt {2 \left (-1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2+\sqrt {1+x^4}}\right )-\sqrt {\frac {1}{2} \left (1+\sqrt {2}\right )} \text {arctanh}\left (\frac {\sqrt {2 \left (1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2+\sqrt {1+x^4}}\right ) \]

output
1/2*(-2+2*2^(1/2))^(1/2)*arctan((-2+2*2^(1/2))^(1/2)*x*(x^2+(x^4+1)^(1/2)) 
^(1/2)/(1+x^2+(x^4+1)^(1/2)))-1/2*(-2+2*2^(1/2))^(1/2)*arctan((2+2*2^(1/2) 
)^(1/2)*x*(x^2+(x^4+1)^(1/2))^(1/2)/(1+x^2+(x^4+1)^(1/2)))+arctanh(2^(1/2) 
*x*(x^2+(x^4+1)^(1/2))^(1/2)/(1+x^2+(x^4+1)^(1/2)))*2^(1/2)-1/2*(2+2*2^(1/ 
2))^(1/2)*arctanh((-2+2*2^(1/2))^(1/2)*x*(x^2+(x^4+1)^(1/2))^(1/2)/(1+x^2+ 
(x^4+1)^(1/2)))-1/2*(2+2*2^(1/2))^(1/2)*arctanh((2+2*2^(1/2))^(1/2)*x*(x^2 
+(x^4+1)^(1/2))^(1/2)/(1+x^2+(x^4+1)^(1/2)))
 
3.29.83.2 Mathematica [A] (verified)

Time = 1.18 (sec) , antiderivative size = 296, normalized size of antiderivative = 0.95 \[ \int \frac {\sqrt {1+x^4} \sqrt {x^2+\sqrt {1+x^4}}}{-1+x^4} \, dx=-\frac {\sqrt {-1+\sqrt {2}} \arctan \left (\frac {\sqrt {\frac {1}{2}+\frac {1}{\sqrt {2}}} \left (-1+x^2+\sqrt {1+x^4}\right )}{x \sqrt {x^2+\sqrt {1+x^4}}}\right )-\sqrt {-1+\sqrt {2}} \arctan \left (\frac {-1+x^2+\sqrt {1+x^4}}{\sqrt {2 \left (1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}\right )-2 \text {arctanh}\left (\frac {-1+x^2+\sqrt {1+x^4}}{\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}}\right )+\sqrt {1+\sqrt {2}} \text {arctanh}\left (\frac {\sqrt {\frac {1}{2}+\frac {1}{\sqrt {2}}} \left (-1+x^2+\sqrt {1+x^4}\right )}{x \sqrt {x^2+\sqrt {1+x^4}}}\right )+\sqrt {1+\sqrt {2}} \text {arctanh}\left (\frac {-1+x^2+\sqrt {1+x^4}}{\sqrt {2 \left (1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}\right )}{\sqrt {2}} \]

input
Integrate[(Sqrt[1 + x^4]*Sqrt[x^2 + Sqrt[1 + x^4]])/(-1 + x^4),x]
 
output
-((Sqrt[-1 + Sqrt[2]]*ArcTan[(Sqrt[1/2 + 1/Sqrt[2]]*(-1 + x^2 + Sqrt[1 + x 
^4]))/(x*Sqrt[x^2 + Sqrt[1 + x^4]])] - Sqrt[-1 + Sqrt[2]]*ArcTan[(-1 + x^2 
 + Sqrt[1 + x^4])/(Sqrt[2*(1 + Sqrt[2])]*x*Sqrt[x^2 + Sqrt[1 + x^4]])] - 2 
*ArcTanh[(-1 + x^2 + Sqrt[1 + x^4])/(Sqrt[2]*x*Sqrt[x^2 + Sqrt[1 + x^4]])] 
 + Sqrt[1 + Sqrt[2]]*ArcTanh[(Sqrt[1/2 + 1/Sqrt[2]]*(-1 + x^2 + Sqrt[1 + x 
^4]))/(x*Sqrt[x^2 + Sqrt[1 + x^4]])] + Sqrt[1 + Sqrt[2]]*ArcTanh[(-1 + x^2 
 + Sqrt[1 + x^4])/(Sqrt[2*(1 + Sqrt[2])]*x*Sqrt[x^2 + Sqrt[1 + x^4]])])/Sq 
rt[2])
 
3.29.83.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {x^4+1} \sqrt {\sqrt {x^4+1}+x^2}}{x^4-1} \, dx\)

\(\Big \downarrow \) 7276

\(\displaystyle \int \left (-\frac {\sqrt {x^4+1} \sqrt {\sqrt {x^4+1}+x^2}}{2 \left (1-x^2\right )}-\frac {\sqrt {x^4+1} \sqrt {\sqrt {x^4+1}+x^2}}{2 \left (x^2+1\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {1}{4} i \int \frac {\sqrt {x^4+1} \sqrt {x^2+\sqrt {x^4+1}}}{i-x}dx-\frac {1}{4} \int \frac {\sqrt {x^4+1} \sqrt {x^2+\sqrt {x^4+1}}}{1-x}dx-\frac {1}{4} i \int \frac {\sqrt {x^4+1} \sqrt {x^2+\sqrt {x^4+1}}}{x+i}dx-\frac {1}{4} \int \frac {\sqrt {x^4+1} \sqrt {x^2+\sqrt {x^4+1}}}{x+1}dx\)

input
Int[(Sqrt[1 + x^4]*Sqrt[x^2 + Sqrt[1 + x^4]])/(-1 + x^4),x]
 
output
$Aborted
 

3.29.83.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.29.83.4 Maple [F]

\[\int \frac {\sqrt {x^{4}+1}\, \sqrt {x^{2}+\sqrt {x^{4}+1}}}{x^{4}-1}d x\]

input
int((x^4+1)^(1/2)*(x^2+(x^4+1)^(1/2))^(1/2)/(x^4-1),x)
 
output
int((x^4+1)^(1/2)*(x^2+(x^4+1)^(1/2))^(1/2)/(x^4-1),x)
 
3.29.83.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 529 vs. \(2 (238) = 476\).

Time = 3.20 (sec) , antiderivative size = 529, normalized size of antiderivative = 1.70 \[ \int \frac {\sqrt {1+x^4} \sqrt {x^2+\sqrt {1+x^4}}}{-1+x^4} \, dx=\frac {1}{8} \, \sqrt {2} \sqrt {-\sqrt {2} + 1} \log \left (-\frac {2 \, \sqrt {x^{4} + 1} {\left (\sqrt {2} x^{2} - x^{2}\right )} \sqrt {-\sqrt {2} + 1} + 2 \, {\left (\sqrt {2} x^{3} - 2 \, x^{3} + \sqrt {x^{4} + 1} {\left (\sqrt {2} x - x\right )}\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} + {\left (2 \, \sqrt {2} x^{4} - 3 \, x^{4} - 1\right )} \sqrt {-\sqrt {2} + 1}}{x^{4} - 1}\right ) - \frac {1}{8} \, \sqrt {2} \sqrt {-\sqrt {2} + 1} \log \left (\frac {2 \, \sqrt {x^{4} + 1} {\left (\sqrt {2} x^{2} - x^{2}\right )} \sqrt {-\sqrt {2} + 1} - 2 \, {\left (\sqrt {2} x^{3} - 2 \, x^{3} + \sqrt {x^{4} + 1} {\left (\sqrt {2} x - x\right )}\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} + {\left (2 \, \sqrt {2} x^{4} - 3 \, x^{4} - 1\right )} \sqrt {-\sqrt {2} + 1}}{x^{4} - 1}\right ) - \frac {1}{8} \, \sqrt {2} \sqrt {\sqrt {2} + 1} \log \left (\frac {2 \, {\left (\sqrt {2} x^{3} + 2 \, x^{3} + \sqrt {x^{4} + 1} {\left (\sqrt {2} x + x\right )}\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} + {\left (2 \, \sqrt {2} x^{4} + 3 \, x^{4} + 2 \, \sqrt {x^{4} + 1} {\left (\sqrt {2} x^{2} + x^{2}\right )} + 1\right )} \sqrt {\sqrt {2} + 1}}{x^{4} - 1}\right ) + \frac {1}{8} \, \sqrt {2} \sqrt {\sqrt {2} + 1} \log \left (\frac {2 \, {\left (\sqrt {2} x^{3} + 2 \, x^{3} + \sqrt {x^{4} + 1} {\left (\sqrt {2} x + x\right )}\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} - {\left (2 \, \sqrt {2} x^{4} + 3 \, x^{4} + 2 \, \sqrt {x^{4} + 1} {\left (\sqrt {2} x^{2} + x^{2}\right )} + 1\right )} \sqrt {\sqrt {2} + 1}}{x^{4} - 1}\right ) + \frac {1}{4} \, \sqrt {2} \log \left (4 \, x^{4} + 4 \, \sqrt {x^{4} + 1} x^{2} + 2 \, {\left (\sqrt {2} x^{3} + \sqrt {2} \sqrt {x^{4} + 1} x\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} + 1\right ) \]

input
integrate((x^4+1)^(1/2)*(x^2+(x^4+1)^(1/2))^(1/2)/(x^4-1),x, algorithm="fr 
icas")
 
output
1/8*sqrt(2)*sqrt(-sqrt(2) + 1)*log(-(2*sqrt(x^4 + 1)*(sqrt(2)*x^2 - x^2)*s 
qrt(-sqrt(2) + 1) + 2*(sqrt(2)*x^3 - 2*x^3 + sqrt(x^4 + 1)*(sqrt(2)*x - x) 
)*sqrt(x^2 + sqrt(x^4 + 1)) + (2*sqrt(2)*x^4 - 3*x^4 - 1)*sqrt(-sqrt(2) + 
1))/(x^4 - 1)) - 1/8*sqrt(2)*sqrt(-sqrt(2) + 1)*log((2*sqrt(x^4 + 1)*(sqrt 
(2)*x^2 - x^2)*sqrt(-sqrt(2) + 1) - 2*(sqrt(2)*x^3 - 2*x^3 + sqrt(x^4 + 1) 
*(sqrt(2)*x - x))*sqrt(x^2 + sqrt(x^4 + 1)) + (2*sqrt(2)*x^4 - 3*x^4 - 1)* 
sqrt(-sqrt(2) + 1))/(x^4 - 1)) - 1/8*sqrt(2)*sqrt(sqrt(2) + 1)*log((2*(sqr 
t(2)*x^3 + 2*x^3 + sqrt(x^4 + 1)*(sqrt(2)*x + x))*sqrt(x^2 + sqrt(x^4 + 1) 
) + (2*sqrt(2)*x^4 + 3*x^4 + 2*sqrt(x^4 + 1)*(sqrt(2)*x^2 + x^2) + 1)*sqrt 
(sqrt(2) + 1))/(x^4 - 1)) + 1/8*sqrt(2)*sqrt(sqrt(2) + 1)*log((2*(sqrt(2)* 
x^3 + 2*x^3 + sqrt(x^4 + 1)*(sqrt(2)*x + x))*sqrt(x^2 + sqrt(x^4 + 1)) - ( 
2*sqrt(2)*x^4 + 3*x^4 + 2*sqrt(x^4 + 1)*(sqrt(2)*x^2 + x^2) + 1)*sqrt(sqrt 
(2) + 1))/(x^4 - 1)) + 1/4*sqrt(2)*log(4*x^4 + 4*sqrt(x^4 + 1)*x^2 + 2*(sq 
rt(2)*x^3 + sqrt(2)*sqrt(x^4 + 1)*x)*sqrt(x^2 + sqrt(x^4 + 1)) + 1)
 
3.29.83.6 Sympy [F]

\[ \int \frac {\sqrt {1+x^4} \sqrt {x^2+\sqrt {1+x^4}}}{-1+x^4} \, dx=\int \frac {\sqrt {x^{2} + \sqrt {x^{4} + 1}} \sqrt {x^{4} + 1}}{\left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right )}\, dx \]

input
integrate((x**4+1)**(1/2)*(x**2+(x**4+1)**(1/2))**(1/2)/(x**4-1),x)
 
output
Integral(sqrt(x**2 + sqrt(x**4 + 1))*sqrt(x**4 + 1)/((x - 1)*(x + 1)*(x**2 
 + 1)), x)
 
3.29.83.7 Maxima [F]

\[ \int \frac {\sqrt {1+x^4} \sqrt {x^2+\sqrt {1+x^4}}}{-1+x^4} \, dx=\int { \frac {\sqrt {x^{4} + 1} \sqrt {x^{2} + \sqrt {x^{4} + 1}}}{x^{4} - 1} \,d x } \]

input
integrate((x^4+1)^(1/2)*(x^2+(x^4+1)^(1/2))^(1/2)/(x^4-1),x, algorithm="ma 
xima")
 
output
integrate(sqrt(x^4 + 1)*sqrt(x^2 + sqrt(x^4 + 1))/(x^4 - 1), x)
 
3.29.83.8 Giac [F]

\[ \int \frac {\sqrt {1+x^4} \sqrt {x^2+\sqrt {1+x^4}}}{-1+x^4} \, dx=\int { \frac {\sqrt {x^{4} + 1} \sqrt {x^{2} + \sqrt {x^{4} + 1}}}{x^{4} - 1} \,d x } \]

input
integrate((x^4+1)^(1/2)*(x^2+(x^4+1)^(1/2))^(1/2)/(x^4-1),x, algorithm="gi 
ac")
 
output
integrate(sqrt(x^4 + 1)*sqrt(x^2 + sqrt(x^4 + 1))/(x^4 - 1), x)
 
3.29.83.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {1+x^4} \sqrt {x^2+\sqrt {1+x^4}}}{-1+x^4} \, dx=\int \frac {\sqrt {x^4+1}\,\sqrt {\sqrt {x^4+1}+x^2}}{x^4-1} \,d x \]

input
int(((x^4 + 1)^(1/2)*((x^4 + 1)^(1/2) + x^2)^(1/2))/(x^4 - 1),x)
 
output
int(((x^4 + 1)^(1/2)*((x^4 + 1)^(1/2) + x^2)^(1/2))/(x^4 - 1), x)