3.30.22 \(\int \frac {(-b-a x^2+x^4) \sqrt [4]{b x^2+a x^4}}{b+a x^4} \, dx\) [2922]

3.30.22.1 Optimal result
3.30.22.2 Mathematica [A] (verified)
3.30.22.3 Rubi [B] (verified)
3.30.22.4 Maple [N/A] (verified)
3.30.22.5 Fricas [F(-1)]
3.30.22.6 Sympy [N/A]
3.30.22.7 Maxima [N/A]
3.30.22.8 Giac [N/A]
3.30.22.9 Mupad [N/A]

3.30.22.1 Optimal result

Integrand size = 38, antiderivative size = 334 \[ \int \frac {\left (-b-a x^2+x^4\right ) \sqrt [4]{b x^2+a x^4}}{b+a x^4} \, dx=\frac {x \sqrt [4]{b x^2+a x^4}}{2 a}+\frac {\left (4 a^2-b\right ) \arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b x^2+a x^4}}\right )}{4 a^{7/4}}+\frac {\left (-4 a^2+b\right ) \text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b x^2+a x^4}}\right )}{4 a^{7/4}}-\frac {\text {RootSum}\left [a^2+a b-2 a \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-a^3 \log (x)-a^2 b \log (x)+a^3 \log \left (\sqrt [4]{b x^2+a x^4}-x \text {$\#$1}\right )+a^2 b \log \left (\sqrt [4]{b x^2+a x^4}-x \text {$\#$1}\right )+a^2 \log (x) \text {$\#$1}^4-b \log (x) \text {$\#$1}^4-a b \log (x) \text {$\#$1}^4-a^2 \log \left (\sqrt [4]{b x^2+a x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4+b \log \left (\sqrt [4]{b x^2+a x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4+a b \log \left (\sqrt [4]{b x^2+a x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4}{a \text {$\#$1}^3-\text {$\#$1}^7}\&\right ]}{4 a} \]

output
Unintegrable
 
3.30.22.2 Mathematica [A] (verified)

Time = 0.99 (sec) , antiderivative size = 383, normalized size of antiderivative = 1.15 \[ \int \frac {\left (-b-a x^2+x^4\right ) \sqrt [4]{b x^2+a x^4}}{b+a x^4} \, dx=\frac {x^{3/2} \left (b+a x^2\right )^{3/4} \left (4 a^{3/4} x^{3/2} \sqrt [4]{b+a x^2}+8 a^2 \arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b+a x^2}}\right )-2 b \arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b+a x^2}}\right )+\left (-8 a^2+2 b\right ) \text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b+a x^2}}\right )+a^{3/4} \text {RootSum}\left [a^2+a b-2 a \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-a^3 \log (x)-a^2 b \log (x)+2 a^3 \log \left (\sqrt [4]{b+a x^2}-\sqrt {x} \text {$\#$1}\right )+2 a^2 b \log \left (\sqrt [4]{b+a x^2}-\sqrt {x} \text {$\#$1}\right )+a^2 \log (x) \text {$\#$1}^4-b \log (x) \text {$\#$1}^4-a b \log (x) \text {$\#$1}^4-2 a^2 \log \left (\sqrt [4]{b+a x^2}-\sqrt {x} \text {$\#$1}\right ) \text {$\#$1}^4+2 b \log \left (\sqrt [4]{b+a x^2}-\sqrt {x} \text {$\#$1}\right ) \text {$\#$1}^4+2 a b \log \left (\sqrt [4]{b+a x^2}-\sqrt {x} \text {$\#$1}\right ) \text {$\#$1}^4}{-a \text {$\#$1}^3+\text {$\#$1}^7}\&\right ]\right )}{8 a^{7/4} \left (x^2 \left (b+a x^2\right )\right )^{3/4}} \]

input
Integrate[((-b - a*x^2 + x^4)*(b*x^2 + a*x^4)^(1/4))/(b + a*x^4),x]
 
output
(x^(3/2)*(b + a*x^2)^(3/4)*(4*a^(3/4)*x^(3/2)*(b + a*x^2)^(1/4) + 8*a^2*Ar 
cTan[(a^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)] - 2*b*ArcTan[(a^(1/4)*Sqrt[x])/( 
b + a*x^2)^(1/4)] + (-8*a^2 + 2*b)*ArcTanh[(a^(1/4)*Sqrt[x])/(b + a*x^2)^( 
1/4)] + a^(3/4)*RootSum[a^2 + a*b - 2*a*#1^4 + #1^8 & , (-(a^3*Log[x]) - a 
^2*b*Log[x] + 2*a^3*Log[(b + a*x^2)^(1/4) - Sqrt[x]*#1] + 2*a^2*b*Log[(b + 
 a*x^2)^(1/4) - Sqrt[x]*#1] + a^2*Log[x]*#1^4 - b*Log[x]*#1^4 - a*b*Log[x] 
*#1^4 - 2*a^2*Log[(b + a*x^2)^(1/4) - Sqrt[x]*#1]*#1^4 + 2*b*Log[(b + a*x^ 
2)^(1/4) - Sqrt[x]*#1]*#1^4 + 2*a*b*Log[(b + a*x^2)^(1/4) - Sqrt[x]*#1]*#1 
^4)/(-(a*#1^3) + #1^7) & ]))/(8*a^(7/4)*(x^2*(b + a*x^2))^(3/4))
 
3.30.22.3 Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(880\) vs. \(2(334)=668\).

Time = 3.14 (sec) , antiderivative size = 880, normalized size of antiderivative = 2.63, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.132, Rules used = {2467, 25, 2035, 7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (-a x^2-b+x^4\right ) \sqrt [4]{a x^4+b x^2}}{a x^4+b} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt [4]{a x^4+b x^2} \int -\frac {\sqrt {x} \sqrt [4]{a x^2+b} \left (-x^4+a x^2+b\right )}{a x^4+b}dx}{\sqrt {x} \sqrt [4]{a x^2+b}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt [4]{a x^4+b x^2} \int \frac {\sqrt {x} \sqrt [4]{a x^2+b} \left (-x^4+a x^2+b\right )}{a x^4+b}dx}{\sqrt {x} \sqrt [4]{a x^2+b}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {2 \sqrt [4]{a x^4+b x^2} \int \frac {x \sqrt [4]{a x^2+b} \left (-x^4+a x^2+b\right )}{a x^4+b}d\sqrt {x}}{\sqrt {x} \sqrt [4]{a x^2+b}}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {2 \sqrt [4]{a x^4+b x^2} \int \left (\frac {x \sqrt [4]{a x^2+b} \left (a^2 x^2+(a+1) b\right )}{a \left (a x^4+b\right )}-\frac {x \sqrt [4]{a x^2+b}}{a}\right )d\sqrt {x}}{\sqrt {x} \sqrt [4]{a x^2+b}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 \sqrt [4]{a x^4+b x^2} \left (\frac {(a+1) \sqrt [4]{a x^2+b} \operatorname {AppellF1}\left (\frac {3}{4},1,-\frac {1}{4},\frac {7}{4},-\frac {\sqrt {-a} x^2}{\sqrt {b}},-\frac {a x^2}{b}\right ) x^{3/2}}{6 a \sqrt [4]{\frac {a x^2}{b}+1}}+\frac {(a+1) \sqrt [4]{a x^2+b} \operatorname {AppellF1}\left (\frac {3}{4},1,-\frac {1}{4},\frac {7}{4},\frac {\sqrt {-a} x^2}{\sqrt {b}},-\frac {a x^2}{b}\right ) x^{3/2}}{6 a \sqrt [4]{\frac {a x^2}{b}+1}}-\frac {\sqrt [4]{a x^2+b} x^{3/2}}{4 a}+\frac {b \arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )}{8 a^{7/4}}-\frac {1}{2} \sqrt [4]{a} \arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )-\frac {\sqrt {-a} \sqrt {b} \arctan \left (\frac {\sqrt [4]{a-\sqrt {-a} \sqrt {b}} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )}{4 \left (a-\sqrt {-a} \sqrt {b}\right )^{3/4}}+\frac {a \arctan \left (\frac {\sqrt [4]{a-\sqrt {-a} \sqrt {b}} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )}{4 \left (a-\sqrt {-a} \sqrt {b}\right )^{3/4}}+\frac {\sqrt {-a} \sqrt {b} \arctan \left (\frac {\sqrt [4]{a+\sqrt {-a} \sqrt {b}} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )}{4 \left (a+\sqrt {-a} \sqrt {b}\right )^{3/4}}+\frac {a \arctan \left (\frac {\sqrt [4]{a+\sqrt {-a} \sqrt {b}} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )}{4 \left (a+\sqrt {-a} \sqrt {b}\right )^{3/4}}-\frac {b \text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )}{8 a^{7/4}}+\frac {1}{2} \sqrt [4]{a} \text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )+\frac {\sqrt {-a} \sqrt {b} \text {arctanh}\left (\frac {\sqrt [4]{a-\sqrt {-a} \sqrt {b}} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )}{4 \left (a-\sqrt {-a} \sqrt {b}\right )^{3/4}}-\frac {a \text {arctanh}\left (\frac {\sqrt [4]{a-\sqrt {-a} \sqrt {b}} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )}{4 \left (a-\sqrt {-a} \sqrt {b}\right )^{3/4}}-\frac {\sqrt {-a} \sqrt {b} \text {arctanh}\left (\frac {\sqrt [4]{a+\sqrt {-a} \sqrt {b}} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )}{4 \left (a+\sqrt {-a} \sqrt {b}\right )^{3/4}}-\frac {a \text {arctanh}\left (\frac {\sqrt [4]{a+\sqrt {-a} \sqrt {b}} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )}{4 \left (a+\sqrt {-a} \sqrt {b}\right )^{3/4}}\right )}{\sqrt {x} \sqrt [4]{a x^2+b}}\)

input
Int[((-b - a*x^2 + x^4)*(b*x^2 + a*x^4)^(1/4))/(b + a*x^4),x]
 
output
(-2*(b*x^2 + a*x^4)^(1/4)*(-1/4*(x^(3/2)*(b + a*x^2)^(1/4))/a + ((1 + a)*x 
^(3/2)*(b + a*x^2)^(1/4)*AppellF1[3/4, 1, -1/4, 7/4, -((Sqrt[-a]*x^2)/Sqrt 
[b]), -((a*x^2)/b)])/(6*a*(1 + (a*x^2)/b)^(1/4)) + ((1 + a)*x^(3/2)*(b + a 
*x^2)^(1/4)*AppellF1[3/4, 1, -1/4, 7/4, (Sqrt[-a]*x^2)/Sqrt[b], -((a*x^2)/ 
b)])/(6*a*(1 + (a*x^2)/b)^(1/4)) - (a^(1/4)*ArcTan[(a^(1/4)*Sqrt[x])/(b + 
a*x^2)^(1/4)])/2 + (b*ArcTan[(a^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)])/(8*a^(7 
/4)) + (a*ArcTan[((a - Sqrt[-a]*Sqrt[b])^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)] 
)/(4*(a - Sqrt[-a]*Sqrt[b])^(3/4)) - (Sqrt[-a]*Sqrt[b]*ArcTan[((a - Sqrt[- 
a]*Sqrt[b])^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)])/(4*(a - Sqrt[-a]*Sqrt[b])^( 
3/4)) + (a*ArcTan[((a + Sqrt[-a]*Sqrt[b])^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4) 
])/(4*(a + Sqrt[-a]*Sqrt[b])^(3/4)) + (Sqrt[-a]*Sqrt[b]*ArcTan[((a + Sqrt[ 
-a]*Sqrt[b])^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)])/(4*(a + Sqrt[-a]*Sqrt[b])^ 
(3/4)) + (a^(1/4)*ArcTanh[(a^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)])/2 - (b*Arc 
Tanh[(a^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)])/(8*a^(7/4)) - (a*ArcTanh[((a - 
Sqrt[-a]*Sqrt[b])^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)])/(4*(a - Sqrt[-a]*Sqrt 
[b])^(3/4)) + (Sqrt[-a]*Sqrt[b]*ArcTanh[((a - Sqrt[-a]*Sqrt[b])^(1/4)*Sqrt 
[x])/(b + a*x^2)^(1/4)])/(4*(a - Sqrt[-a]*Sqrt[b])^(3/4)) - (a*ArcTanh[((a 
 + Sqrt[-a]*Sqrt[b])^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)])/(4*(a + Sqrt[-a]*S 
qrt[b])^(3/4)) - (Sqrt[-a]*Sqrt[b]*ArcTanh[((a + Sqrt[-a]*Sqrt[b])^(1/4)*S 
qrt[x])/(b + a*x^2)^(1/4)])/(4*(a + Sqrt[-a]*Sqrt[b])^(3/4))))/(Sqrt[x]...
 

3.30.22.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.30.22.4 Maple [N/A] (verified)

Time = 0.71 (sec) , antiderivative size = 252, normalized size of antiderivative = 0.75

method result size
pseudoelliptic \(\frac {4 x \left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}} a^{\frac {3}{4}}-2 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-2 a \,\textit {\_Z}^{4}+a^{2}+a b \right )}{\sum }\frac {\left (\left (-a^{2}+a b +b \right ) \textit {\_R}^{4}+a^{2} \left (a +b \right )\right ) \ln \left (\frac {-\textit {\_R} x +\left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R}^{3} \left (-\textit {\_R}^{4}+a \right )}\right ) a^{\frac {3}{4}}-4 \ln \left (\frac {a^{\frac {1}{4}} x +\left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}}}{-a^{\frac {1}{4}} x +\left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}}}\right ) a^{2}-8 \arctan \left (\frac {\left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}}}{a^{\frac {1}{4}} x}\right ) a^{2}+\ln \left (\frac {a^{\frac {1}{4}} x +\left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}}}{-a^{\frac {1}{4}} x +\left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}}}\right ) b +2 \arctan \left (\frac {\left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}}}{a^{\frac {1}{4}} x}\right ) b}{8 a^{\frac {7}{4}}}\) \(252\)

input
int((x^4-a*x^2-b)*(a*x^4+b*x^2)^(1/4)/(a*x^4+b),x,method=_RETURNVERBOSE)
 
output
1/8*(4*x*(x^2*(a*x^2+b))^(1/4)*a^(3/4)-2*sum(((-a^2+a*b+b)*_R^4+a^2*(a+b)) 
*ln((-_R*x+(x^2*(a*x^2+b))^(1/4))/x)/_R^3/(-_R^4+a),_R=RootOf(_Z^8-2*_Z^4* 
a+a^2+a*b))*a^(3/4)-4*ln((a^(1/4)*x+(x^2*(a*x^2+b))^(1/4))/(-a^(1/4)*x+(x^ 
2*(a*x^2+b))^(1/4)))*a^2-8*arctan(1/a^(1/4)/x*(x^2*(a*x^2+b))^(1/4))*a^2+l 
n((a^(1/4)*x+(x^2*(a*x^2+b))^(1/4))/(-a^(1/4)*x+(x^2*(a*x^2+b))^(1/4)))*b+ 
2*arctan(1/a^(1/4)/x*(x^2*(a*x^2+b))^(1/4))*b)/a^(7/4)
 
3.30.22.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\left (-b-a x^2+x^4\right ) \sqrt [4]{b x^2+a x^4}}{b+a x^4} \, dx=\text {Timed out} \]

input
integrate((x^4-a*x^2-b)*(a*x^4+b*x^2)^(1/4)/(a*x^4+b),x, algorithm="fricas 
")
 
output
Timed out
 
3.30.22.6 Sympy [N/A]

Not integrable

Time = 15.34 (sec) , antiderivative size = 31, normalized size of antiderivative = 0.09 \[ \int \frac {\left (-b-a x^2+x^4\right ) \sqrt [4]{b x^2+a x^4}}{b+a x^4} \, dx=\int \frac {\sqrt [4]{x^{2} \left (a x^{2} + b\right )} \left (- a x^{2} - b + x^{4}\right )}{a x^{4} + b}\, dx \]

input
integrate((x**4-a*x**2-b)*(a*x**4+b*x**2)**(1/4)/(a*x**4+b),x)
 
output
Integral((x**2*(a*x**2 + b))**(1/4)*(-a*x**2 - b + x**4)/(a*x**4 + b), x)
 
3.30.22.7 Maxima [N/A]

Not integrable

Time = 0.22 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.11 \[ \int \frac {\left (-b-a x^2+x^4\right ) \sqrt [4]{b x^2+a x^4}}{b+a x^4} \, dx=\int { \frac {{\left (a x^{4} + b x^{2}\right )}^{\frac {1}{4}} {\left (x^{4} - a x^{2} - b\right )}}{a x^{4} + b} \,d x } \]

input
integrate((x^4-a*x^2-b)*(a*x^4+b*x^2)^(1/4)/(a*x^4+b),x, algorithm="maxima 
")
 
output
integrate((a*x^4 + b*x^2)^(1/4)*(x^4 - a*x^2 - b)/(a*x^4 + b), x)
 
3.30.22.8 Giac [N/A]

Not integrable

Time = 1.42 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.11 \[ \int \frac {\left (-b-a x^2+x^4\right ) \sqrt [4]{b x^2+a x^4}}{b+a x^4} \, dx=\int { \frac {{\left (a x^{4} + b x^{2}\right )}^{\frac {1}{4}} {\left (x^{4} - a x^{2} - b\right )}}{a x^{4} + b} \,d x } \]

input
integrate((x^4-a*x^2-b)*(a*x^4+b*x^2)^(1/4)/(a*x^4+b),x, algorithm="giac")
 
output
integrate((a*x^4 + b*x^2)^(1/4)*(x^4 - a*x^2 - b)/(a*x^4 + b), x)
 
3.30.22.9 Mupad [N/A]

Not integrable

Time = 7.54 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.11 \[ \int \frac {\left (-b-a x^2+x^4\right ) \sqrt [4]{b x^2+a x^4}}{b+a x^4} \, dx=\int -\frac {{\left (a\,x^4+b\,x^2\right )}^{1/4}\,\left (-x^4+a\,x^2+b\right )}{a\,x^4+b} \,d x \]

input
int(-((a*x^4 + b*x^2)^(1/4)*(b + a*x^2 - x^4))/(b + a*x^4),x)
 
output
int(-((a*x^4 + b*x^2)^(1/4)*(b + a*x^2 - x^4))/(b + a*x^4), x)