3.30.37 \(\int \frac {(-b+a x^4) \sqrt [4]{-b x^2+a x^4}}{-b-a x^2+x^4} \, dx\) [2937]

3.30.37.1 Optimal result
3.30.37.2 Mathematica [A] (verified)
3.30.37.3 Rubi [B] (verified)
3.30.37.4 Maple [N/A] (verified)
3.30.37.5 Fricas [F(-1)]
3.30.37.6 Sympy [N/A]
3.30.37.7 Maxima [N/A]
3.30.37.8 Giac [C] (verification not implemented)
3.30.37.9 Mupad [N/A]

3.30.37.1 Optimal result

Integrand size = 41, antiderivative size = 346 \[ \int \frac {\left (-b+a x^4\right ) \sqrt [4]{-b x^2+a x^4}}{-b-a x^2+x^4} \, dx=\frac {1}{2} a x \sqrt [4]{-b x^2+a x^4}+\frac {1}{4} \left (-4 a^{9/4}+\sqrt [4]{a} b\right ) \arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{-b x^2+a x^4}}\right )+\frac {1}{4} \left (4 a^{9/4}-\sqrt [4]{a} b\right ) \text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{-b x^2+a x^4}}\right )+\frac {1}{2} \text {RootSum}\left [2 a^2-b-3 a \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-2 a^4 \log (x)+a^2 b \log (x)+2 a^4 \log \left (\sqrt [4]{-b x^2+a x^4}-x \text {$\#$1}\right )-a^2 b \log \left (\sqrt [4]{-b x^2+a x^4}-x \text {$\#$1}\right )+a^3 \log (x) \text {$\#$1}^4+b \log (x) \text {$\#$1}^4-a b \log (x) \text {$\#$1}^4-a^3 \log \left (\sqrt [4]{-b x^2+a x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4-b \log \left (\sqrt [4]{-b x^2+a x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4+a b \log \left (\sqrt [4]{-b x^2+a x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4}{3 a \text {$\#$1}^3-2 \text {$\#$1}^7}\&\right ] \]

output
Unintegrable
 
3.30.37.2 Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 380, normalized size of antiderivative = 1.10 \[ \int \frac {\left (-b+a x^4\right ) \sqrt [4]{-b x^2+a x^4}}{-b-a x^2+x^4} \, dx=\frac {\sqrt [4]{-b x^2+a x^4} \left (2 a x^{3/2} \sqrt [4]{-b+a x^2}+\sqrt [4]{a} \left (-4 a^2+b\right ) \arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )+\sqrt [4]{a} \left (4 a^2-b\right ) \text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{-b+a x^2}}\right )-\text {RootSum}\left [2 a^2-b-3 a \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {2 a^4 \log (x)-a^2 b \log (x)-4 a^4 \log \left (\sqrt [4]{-b+a x^2}-\sqrt {x} \text {$\#$1}\right )+2 a^2 b \log \left (\sqrt [4]{-b+a x^2}-\sqrt {x} \text {$\#$1}\right )-a^3 \log (x) \text {$\#$1}^4-b \log (x) \text {$\#$1}^4+a b \log (x) \text {$\#$1}^4+2 a^3 \log \left (\sqrt [4]{-b+a x^2}-\sqrt {x} \text {$\#$1}\right ) \text {$\#$1}^4+2 b \log \left (\sqrt [4]{-b+a x^2}-\sqrt {x} \text {$\#$1}\right ) \text {$\#$1}^4-2 a b \log \left (\sqrt [4]{-b+a x^2}-\sqrt {x} \text {$\#$1}\right ) \text {$\#$1}^4}{3 a \text {$\#$1}^3-2 \text {$\#$1}^7}\&\right ]\right )}{4 \sqrt {x} \sqrt [4]{-b+a x^2}} \]

input
Integrate[((-b + a*x^4)*(-(b*x^2) + a*x^4)^(1/4))/(-b - a*x^2 + x^4),x]
 
output
((-(b*x^2) + a*x^4)^(1/4)*(2*a*x^(3/2)*(-b + a*x^2)^(1/4) + a^(1/4)*(-4*a^ 
2 + b)*ArcTan[(a^(1/4)*Sqrt[x])/(-b + a*x^2)^(1/4)] + a^(1/4)*(4*a^2 - b)* 
ArcTanh[(a^(1/4)*Sqrt[x])/(-b + a*x^2)^(1/4)] - RootSum[2*a^2 - b - 3*a*#1 
^4 + #1^8 & , (2*a^4*Log[x] - a^2*b*Log[x] - 4*a^4*Log[(-b + a*x^2)^(1/4) 
- Sqrt[x]*#1] + 2*a^2*b*Log[(-b + a*x^2)^(1/4) - Sqrt[x]*#1] - a^3*Log[x]* 
#1^4 - b*Log[x]*#1^4 + a*b*Log[x]*#1^4 + 2*a^3*Log[(-b + a*x^2)^(1/4) - Sq 
rt[x]*#1]*#1^4 + 2*b*Log[(-b + a*x^2)^(1/4) - Sqrt[x]*#1]*#1^4 - 2*a*b*Log 
[(-b + a*x^2)^(1/4) - Sqrt[x]*#1]*#1^4)/(3*a*#1^3 - 2*#1^7) & ]))/(4*Sqrt[ 
x]*(-b + a*x^2)^(1/4))
 
3.30.37.3 Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(1415\) vs. \(2(346)=692\).

Time = 4.51 (sec) , antiderivative size = 1415, normalized size of antiderivative = 4.09, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.098, Rules used = {2467, 2035, 7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a x^4-b\right ) \sqrt [4]{a x^4-b x^2}}{-a x^2-b+x^4} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt [4]{a x^4-b x^2} \int \frac {\sqrt {x} \sqrt [4]{a x^2-b} \left (b-a x^4\right )}{-x^4+a x^2+b}dx}{\sqrt {x} \sqrt [4]{a x^2-b}}\)

\(\Big \downarrow \) 2035

\(\displaystyle \frac {2 \sqrt [4]{a x^4-b x^2} \int \frac {x \sqrt [4]{a x^2-b} \left (b-a x^4\right )}{-x^4+a x^2+b}d\sqrt {x}}{\sqrt {x} \sqrt [4]{a x^2-b}}\)

\(\Big \downarrow \) 7279

\(\displaystyle \frac {2 \sqrt [4]{a x^4-b x^2} \int \left (a \sqrt [4]{a x^2-b} x+\frac {\sqrt [4]{a x^2-b} \left (-a^2 x^2-a b+b\right ) x}{-x^4+a x^2+b}\right )d\sqrt {x}}{\sqrt {x} \sqrt [4]{a x^2-b}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 \sqrt [4]{a x^4-b x^2} \left (-\frac {b \arctan \left (\frac {\sqrt [4]{a^2-\sqrt {a^2+4 b} a-2 b} \sqrt {x}}{\sqrt [4]{a-\sqrt {a^2+4 b}} \sqrt [4]{a x^2-b}}\right ) a^3}{\sqrt {a^2+4 b} \sqrt [4]{a-\sqrt {a^2+4 b}} \left (a^2-\sqrt {a^2+4 b} a-2 b\right )^{3/4}}+\frac {b \arctan \left (\frac {\sqrt [4]{a^2+\sqrt {a^2+4 b} a-2 b} \sqrt {x}}{\sqrt [4]{a+\sqrt {a^2+4 b}} \sqrt [4]{a x^2-b}}\right ) a^3}{\sqrt {a^2+4 b} \sqrt [4]{a+\sqrt {a^2+4 b}} \left (a^2+\sqrt {a^2+4 b} a-2 b\right )^{3/4}}+\frac {b \text {arctanh}\left (\frac {\sqrt [4]{a^2-\sqrt {a^2+4 b} a-2 b} \sqrt {x}}{\sqrt [4]{a-\sqrt {a^2+4 b}} \sqrt [4]{a x^2-b}}\right ) a^3}{\sqrt {a^2+4 b} \sqrt [4]{a-\sqrt {a^2+4 b}} \left (a^2-\sqrt {a^2+4 b} a-2 b\right )^{3/4}}-\frac {b \text {arctanh}\left (\frac {\sqrt [4]{a^2+\sqrt {a^2+4 b} a-2 b} \sqrt {x}}{\sqrt [4]{a+\sqrt {a^2+4 b}} \sqrt [4]{a x^2-b}}\right ) a^3}{\sqrt {a^2+4 b} \sqrt [4]{a+\sqrt {a^2+4 b}} \left (a^2+\sqrt {a^2+4 b} a-2 b\right )^{3/4}}-\frac {1}{2} \arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{a x^2-b}}\right ) a^{9/4}+\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{a x^2-b}}\right ) a^{9/4}-\frac {\left (a^2-b\right ) \left (a-\sqrt {a^2+4 b}\right )^{3/4} \arctan \left (\frac {\sqrt [4]{a^2-\sqrt {a^2+4 b} a-2 b} \sqrt {x}}{\sqrt [4]{a-\sqrt {a^2+4 b}} \sqrt [4]{a x^2-b}}\right ) a^2}{2 \sqrt {a^2+4 b} \left (a^2-\sqrt {a^2+4 b} a-2 b\right )^{3/4}}+\frac {\left (a^2-b\right ) \left (a+\sqrt {a^2+4 b}\right )^{3/4} \arctan \left (\frac {\sqrt [4]{a^2+\sqrt {a^2+4 b} a-2 b} \sqrt {x}}{\sqrt [4]{a+\sqrt {a^2+4 b}} \sqrt [4]{a x^2-b}}\right ) a^2}{2 \sqrt {a^2+4 b} \left (a^2+\sqrt {a^2+4 b} a-2 b\right )^{3/4}}+\frac {\left (a^2-b\right ) \left (a-\sqrt {a^2+4 b}\right )^{3/4} \text {arctanh}\left (\frac {\sqrt [4]{a^2-\sqrt {a^2+4 b} a-2 b} \sqrt {x}}{\sqrt [4]{a-\sqrt {a^2+4 b}} \sqrt [4]{a x^2-b}}\right ) a^2}{2 \sqrt {a^2+4 b} \left (a^2-\sqrt {a^2+4 b} a-2 b\right )^{3/4}}-\frac {\left (a^2-b\right ) \left (a+\sqrt {a^2+4 b}\right )^{3/4} \text {arctanh}\left (\frac {\sqrt [4]{a^2+\sqrt {a^2+4 b} a-2 b} \sqrt {x}}{\sqrt [4]{a+\sqrt {a^2+4 b}} \sqrt [4]{a x^2-b}}\right ) a^2}{2 \sqrt {a^2+4 b} \left (a^2+\sqrt {a^2+4 b} a-2 b\right )^{3/4}}+\frac {1}{4} x^{3/2} \sqrt [4]{a x^2-b} a+\frac {1}{8} b \arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{a x^2-b}}\right ) \sqrt [4]{a}-\frac {1}{8} b \text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{a x^2-b}}\right ) \sqrt [4]{a}+\frac {2 (1-a) b x^{3/2} \sqrt [4]{a x^2-b} \operatorname {AppellF1}\left (\frac {3}{4},1,-\frac {1}{4},\frac {7}{4},\frac {2 x^2}{a-\sqrt {a^2+4 b}},\frac {a x^2}{b}\right )}{3 \left (a^2-\sqrt {a^2+4 b} a+4 b\right ) \sqrt [4]{1-\frac {a x^2}{b}}}+\frac {2 (1-a) b x^{3/2} \sqrt [4]{a x^2-b} \operatorname {AppellF1}\left (\frac {3}{4},1,-\frac {1}{4},\frac {7}{4},\frac {2 x^2}{a+\sqrt {a^2+4 b}},\frac {a x^2}{b}\right )}{3 \left (a^2+\sqrt {a^2+4 b} a+4 b\right ) \sqrt [4]{1-\frac {a x^2}{b}}}\right )}{\sqrt {x} \sqrt [4]{a x^2-b}}\)

input
Int[((-b + a*x^4)*(-(b*x^2) + a*x^4)^(1/4))/(-b - a*x^2 + x^4),x]
 
output
(2*(-(b*x^2) + a*x^4)^(1/4)*((a*x^(3/2)*(-b + a*x^2)^(1/4))/4 + (2*(1 - a) 
*b*x^(3/2)*(-b + a*x^2)^(1/4)*AppellF1[3/4, 1, -1/4, 7/4, (2*x^2)/(a - Sqr 
t[a^2 + 4*b]), (a*x^2)/b])/(3*(a^2 + 4*b - a*Sqrt[a^2 + 4*b])*(1 - (a*x^2) 
/b)^(1/4)) + (2*(1 - a)*b*x^(3/2)*(-b + a*x^2)^(1/4)*AppellF1[3/4, 1, -1/4 
, 7/4, (2*x^2)/(a + Sqrt[a^2 + 4*b]), (a*x^2)/b])/(3*(a^2 + 4*b + a*Sqrt[a 
^2 + 4*b])*(1 - (a*x^2)/b)^(1/4)) - (a^(9/4)*ArcTan[(a^(1/4)*Sqrt[x])/(-b 
+ a*x^2)^(1/4)])/2 + (a^(1/4)*b*ArcTan[(a^(1/4)*Sqrt[x])/(-b + a*x^2)^(1/4 
)])/8 - (a^3*b*ArcTan[((a^2 - 2*b - a*Sqrt[a^2 + 4*b])^(1/4)*Sqrt[x])/((a 
- Sqrt[a^2 + 4*b])^(1/4)*(-b + a*x^2)^(1/4))])/(Sqrt[a^2 + 4*b]*(a - Sqrt[ 
a^2 + 4*b])^(1/4)*(a^2 - 2*b - a*Sqrt[a^2 + 4*b])^(3/4)) - (a^2*(a^2 - b)* 
(a - Sqrt[a^2 + 4*b])^(3/4)*ArcTan[((a^2 - 2*b - a*Sqrt[a^2 + 4*b])^(1/4)* 
Sqrt[x])/((a - Sqrt[a^2 + 4*b])^(1/4)*(-b + a*x^2)^(1/4))])/(2*Sqrt[a^2 + 
4*b]*(a^2 - 2*b - a*Sqrt[a^2 + 4*b])^(3/4)) + (a^3*b*ArcTan[((a^2 - 2*b + 
a*Sqrt[a^2 + 4*b])^(1/4)*Sqrt[x])/((a + Sqrt[a^2 + 4*b])^(1/4)*(-b + a*x^2 
)^(1/4))])/(Sqrt[a^2 + 4*b]*(a + Sqrt[a^2 + 4*b])^(1/4)*(a^2 - 2*b + a*Sqr 
t[a^2 + 4*b])^(3/4)) + (a^2*(a^2 - b)*(a + Sqrt[a^2 + 4*b])^(3/4)*ArcTan[( 
(a^2 - 2*b + a*Sqrt[a^2 + 4*b])^(1/4)*Sqrt[x])/((a + Sqrt[a^2 + 4*b])^(1/4 
)*(-b + a*x^2)^(1/4))])/(2*Sqrt[a^2 + 4*b]*(a^2 - 2*b + a*Sqrt[a^2 + 4*b]) 
^(3/4)) + (a^(9/4)*ArcTanh[(a^(1/4)*Sqrt[x])/(-b + a*x^2)^(1/4)])/2 - (a^( 
1/4)*b*ArcTanh[(a^(1/4)*Sqrt[x])/(-b + a*x^2)^(1/4)])/8 + (a^3*b*ArcTan...
 

3.30.37.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
3.30.37.4 Maple [N/A] (verified)

Time = 0.00 (sec) , antiderivative size = 215, normalized size of antiderivative = 0.62

method result size
pseudoelliptic \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-3 a \,\textit {\_Z}^{4}+2 a^{2}-b \right )}{\sum }\frac {\left (\left (-a^{3}+a b -b \right ) \textit {\_R}^{4}+2 a^{4}-a^{2} b \right ) \ln \left (\frac {-\textit {\_R} x +\left (x^{2} \left (a \,x^{2}-b \right )\right )^{\frac {1}{4}}}{x}\right )}{-2 \textit {\_R}^{7}+3 \textit {\_R}^{3} a}\right )}{2}+\frac {\left (-a^{\frac {1}{4}} b +4 a^{\frac {9}{4}}\right ) \ln \left (\frac {-a^{\frac {1}{4}} x -\left (x^{2} \left (a \,x^{2}-b \right )\right )^{\frac {1}{4}}}{a^{\frac {1}{4}} x -\left (x^{2} \left (a \,x^{2}-b \right )\right )^{\frac {1}{4}}}\right )}{8}+\frac {\left (-2 a^{\frac {1}{4}} b +8 a^{\frac {9}{4}}\right ) \arctan \left (\frac {\left (x^{2} \left (a \,x^{2}-b \right )\right )^{\frac {1}{4}}}{a^{\frac {1}{4}} x}\right )}{8}+\frac {x a \left (x^{2} \left (a \,x^{2}-b \right )\right )^{\frac {1}{4}}}{2}\) \(215\)

input
int((a*x^4-b)*(a*x^4-b*x^2)^(1/4)/(x^4-a*x^2-b),x,method=_RETURNVERBOSE)
 
output
1/2*sum(((-a^3+a*b-b)*_R^4+2*a^4-a^2*b)*ln((-_R*x+(x^2*(a*x^2-b))^(1/4))/x 
)/(-2*_R^7+3*_R^3*a),_R=RootOf(_Z^8-3*_Z^4*a+2*a^2-b))+1/8*(-a^(1/4)*b+4*a 
^(9/4))*ln((-a^(1/4)*x-(x^2*(a*x^2-b))^(1/4))/(a^(1/4)*x-(x^2*(a*x^2-b))^( 
1/4)))+1/8*(-2*a^(1/4)*b+8*a^(9/4))*arctan(1/a^(1/4)/x*(x^2*(a*x^2-b))^(1/ 
4))+1/2*x*a*(x^2*(a*x^2-b))^(1/4)
 
3.30.37.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\left (-b+a x^4\right ) \sqrt [4]{-b x^2+a x^4}}{-b-a x^2+x^4} \, dx=\text {Timed out} \]

input
integrate((a*x^4-b)*(a*x^4-b*x^2)^(1/4)/(x^4-a*x^2-b),x, algorithm="fricas 
")
 
output
Timed out
 
3.30.37.6 Sympy [N/A]

Not integrable

Time = 12.11 (sec) , antiderivative size = 31, normalized size of antiderivative = 0.09 \[ \int \frac {\left (-b+a x^4\right ) \sqrt [4]{-b x^2+a x^4}}{-b-a x^2+x^4} \, dx=\int \frac {\sqrt [4]{x^{2} \left (a x^{2} - b\right )} \left (a x^{4} - b\right )}{- a x^{2} - b + x^{4}}\, dx \]

input
integrate((a*x**4-b)*(a*x**4-b*x**2)**(1/4)/(x**4-a*x**2-b),x)
 
output
Integral((x**2*(a*x**2 - b))**(1/4)*(a*x**4 - b)/(-a*x**2 - b + x**4), x)
 
3.30.37.7 Maxima [N/A]

Not integrable

Time = 0.23 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.12 \[ \int \frac {\left (-b+a x^4\right ) \sqrt [4]{-b x^2+a x^4}}{-b-a x^2+x^4} \, dx=\int { \frac {{\left (a x^{4} - b x^{2}\right )}^{\frac {1}{4}} {\left (a x^{4} - b\right )}}{x^{4} - a x^{2} - b} \,d x } \]

input
integrate((a*x^4-b)*(a*x^4-b*x^2)^(1/4)/(x^4-a*x^2-b),x, algorithm="maxima 
")
 
output
integrate((a*x^4 - b*x^2)^(1/4)*(a*x^4 - b)/(x^4 - a*x^2 - b), x)
 
3.30.37.8 Giac [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 44.02 (sec) , antiderivative size = 252, normalized size of antiderivative = 0.73 \[ \int \frac {\left (-b+a x^4\right ) \sqrt [4]{-b x^2+a x^4}}{-b-a x^2+x^4} \, dx=\frac {1}{2} \, {\left (a - \frac {b}{x^{2}}\right )}^{\frac {1}{4}} a x^{2} + \frac {1}{8} \, \sqrt {2} {\left (4 \, \left (-a\right )^{\frac {1}{4}} a^{2} - \left (-a\right )^{\frac {1}{4}} b\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (-a\right )^{\frac {1}{4}} + 2 \, {\left (a - \frac {b}{x^{2}}\right )}^{\frac {1}{4}}\right )}}{2 \, \left (-a\right )^{\frac {1}{4}}}\right ) + \frac {1}{8} \, \sqrt {2} {\left (4 \, \left (-a\right )^{\frac {1}{4}} a^{2} - \left (-a\right )^{\frac {1}{4}} b\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (-a\right )^{\frac {1}{4}} - 2 \, {\left (a - \frac {b}{x^{2}}\right )}^{\frac {1}{4}}\right )}}{2 \, \left (-a\right )^{\frac {1}{4}}}\right ) + \frac {1}{16} \, \sqrt {2} {\left (4 \, \left (-a\right )^{\frac {1}{4}} a^{2} - \left (-a\right )^{\frac {1}{4}} b\right )} \log \left (\sqrt {2} \left (-a\right )^{\frac {1}{4}} {\left (a - \frac {b}{x^{2}}\right )}^{\frac {1}{4}} + \sqrt {-a} + \sqrt {a - \frac {b}{x^{2}}}\right ) - \frac {1}{16} \, \sqrt {2} {\left (4 \, \left (-a\right )^{\frac {1}{4}} a^{2} - \left (-a\right )^{\frac {1}{4}} b\right )} \log \left (-\sqrt {2} \left (-a\right )^{\frac {1}{4}} {\left (a - \frac {b}{x^{2}}\right )}^{\frac {1}{4}} + \sqrt {-a} + \sqrt {a - \frac {b}{x^{2}}}\right ) \]

input
integrate((a*x^4-b)*(a*x^4-b*x^2)^(1/4)/(x^4-a*x^2-b),x, algorithm="giac")
 
output
1/2*(a - b/x^2)^(1/4)*a*x^2 + 1/8*sqrt(2)*(4*(-a)^(1/4)*a^2 - (-a)^(1/4)*b 
)*arctan(1/2*sqrt(2)*(sqrt(2)*(-a)^(1/4) + 2*(a - b/x^2)^(1/4))/(-a)^(1/4) 
) + 1/8*sqrt(2)*(4*(-a)^(1/4)*a^2 - (-a)^(1/4)*b)*arctan(-1/2*sqrt(2)*(sqr 
t(2)*(-a)^(1/4) - 2*(a - b/x^2)^(1/4))/(-a)^(1/4)) + 1/16*sqrt(2)*(4*(-a)^ 
(1/4)*a^2 - (-a)^(1/4)*b)*log(sqrt(2)*(-a)^(1/4)*(a - b/x^2)^(1/4) + sqrt( 
-a) + sqrt(a - b/x^2)) - 1/16*sqrt(2)*(4*(-a)^(1/4)*a^2 - (-a)^(1/4)*b)*lo 
g(-sqrt(2)*(-a)^(1/4)*(a - b/x^2)^(1/4) + sqrt(-a) + sqrt(a - b/x^2))
 
3.30.37.9 Mupad [N/A]

Not integrable

Time = 0.00 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.11 \[ \int \frac {\left (-b+a x^4\right ) \sqrt [4]{-b x^2+a x^4}}{-b-a x^2+x^4} \, dx=\int \frac {\left (b-a\,x^4\right )\,{\left (a\,x^4-b\,x^2\right )}^{1/4}}{-x^4+a\,x^2+b} \,d x \]

input
int(((b - a*x^4)*(a*x^4 - b*x^2)^(1/4))/(b + a*x^2 - x^4),x)
 
output
int(((b - a*x^4)*(a*x^4 - b*x^2)^(1/4))/(b + a*x^2 - x^4), x)