3.30.40 \(\int \frac {(1+x^2) \sqrt {x^2+\sqrt {1+x^4}}}{\sqrt {1+x^4} (-1+x^2+x^4)} \, dx\) [2940]

3.30.40.1 Optimal result
3.30.40.2 Mathematica [A] (verified)
3.30.40.3 Rubi [C] (warning: unable to verify)
3.30.40.4 Maple [N/A] (verified)
3.30.40.5 Fricas [C] (verification not implemented)
3.30.40.6 Sympy [N/A]
3.30.40.7 Maxima [N/A]
3.30.40.8 Giac [N/A]
3.30.40.9 Mupad [N/A]

3.30.40.1 Optimal result

Integrand size = 42, antiderivative size = 349 \[ \int \frac {\left (1+x^2\right ) \sqrt {x^2+\sqrt {1+x^4}}}{\sqrt {1+x^4} \left (-1+x^2+x^4\right )} \, dx=-\frac {\text {RootSum}\left [1+2 \text {$\#$1}^2-6 \text {$\#$1}^4-2 \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {\log \left (-1+x^2+\sqrt {1+x^4}\right )-\log \left (\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}-\text {$\#$1}+x^2 \text {$\#$1}+\sqrt {1+x^4} \text {$\#$1}\right )-\log \left (-1+x^2+\sqrt {1+x^4}\right ) \text {$\#$1}^2+\log \left (\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}-\text {$\#$1}+x^2 \text {$\#$1}+\sqrt {1+x^4} \text {$\#$1}\right ) \text {$\#$1}^2-3 \log \left (-1+x^2+\sqrt {1+x^4}\right ) \text {$\#$1}^4+3 \log \left (\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}-\text {$\#$1}+x^2 \text {$\#$1}+\sqrt {1+x^4} \text {$\#$1}\right ) \text {$\#$1}^4-\log \left (-1+x^2+\sqrt {1+x^4}\right ) \text {$\#$1}^6+\log \left (\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}-\text {$\#$1}+x^2 \text {$\#$1}+\sqrt {1+x^4} \text {$\#$1}\right ) \text {$\#$1}^6}{\text {$\#$1}-6 \text {$\#$1}^3-3 \text {$\#$1}^5+2 \text {$\#$1}^7}\&\right ]}{2 \sqrt {2}} \]

output
Unintegrable
 
3.30.40.2 Mathematica [A] (verified)

Time = 0.52 (sec) , antiderivative size = 359, normalized size of antiderivative = 1.03 \[ \int \frac {\left (1+x^2\right ) \sqrt {x^2+\sqrt {1+x^4}}}{\sqrt {1+x^4} \left (-1+x^2+x^4\right )} \, dx=\frac {\text {RootSum}\left [1-2 \text {$\#$1}^2-6 \text {$\#$1}^4+2 \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {\log \left (1+x^2+\sqrt {1+x^4}\right )-\log \left (\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}-\text {$\#$1}-x^2 \text {$\#$1}-\sqrt {1+x^4} \text {$\#$1}\right )+3 \log \left (1+x^2+\sqrt {1+x^4}\right ) \text {$\#$1}^2-3 \log \left (\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}-\text {$\#$1}-x^2 \text {$\#$1}-\sqrt {1+x^4} \text {$\#$1}\right ) \text {$\#$1}^2+\log \left (1+x^2+\sqrt {1+x^4}\right ) \text {$\#$1}^4-\log \left (\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}-\text {$\#$1}-x^2 \text {$\#$1}-\sqrt {1+x^4} \text {$\#$1}\right ) \text {$\#$1}^4-\log \left (1+x^2+\sqrt {1+x^4}\right ) \text {$\#$1}^6+\log \left (\sqrt {2} x \sqrt {x^2+\sqrt {1+x^4}}-\text {$\#$1}-x^2 \text {$\#$1}-\sqrt {1+x^4} \text {$\#$1}\right ) \text {$\#$1}^6}{-\text {$\#$1}-6 \text {$\#$1}^3+3 \text {$\#$1}^5+2 \text {$\#$1}^7}\&\right ]}{2 \sqrt {2}} \]

input
Integrate[((1 + x^2)*Sqrt[x^2 + Sqrt[1 + x^4]])/(Sqrt[1 + x^4]*(-1 + x^2 + 
 x^4)),x]
 
output
RootSum[1 - 2*#1^2 - 6*#1^4 + 2*#1^6 + #1^8 & , (Log[1 + x^2 + Sqrt[1 + x^ 
4]] - Log[Sqrt[2]*x*Sqrt[x^2 + Sqrt[1 + x^4]] - #1 - x^2*#1 - Sqrt[1 + x^4 
]*#1] + 3*Log[1 + x^2 + Sqrt[1 + x^4]]*#1^2 - 3*Log[Sqrt[2]*x*Sqrt[x^2 + S 
qrt[1 + x^4]] - #1 - x^2*#1 - Sqrt[1 + x^4]*#1]*#1^2 + Log[1 + x^2 + Sqrt[ 
1 + x^4]]*#1^4 - Log[Sqrt[2]*x*Sqrt[x^2 + Sqrt[1 + x^4]] - #1 - x^2*#1 - S 
qrt[1 + x^4]*#1]*#1^4 - Log[1 + x^2 + Sqrt[1 + x^4]]*#1^6 + Log[Sqrt[2]*x* 
Sqrt[x^2 + Sqrt[1 + x^4]] - #1 - x^2*#1 - Sqrt[1 + x^4]*#1]*#1^6)/(-#1 - 6 
*#1^3 + 3*#1^5 + 2*#1^7) & ]/(2*Sqrt[2])
 
3.30.40.3 Rubi [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 2.44 (sec) , antiderivative size = 683, normalized size of antiderivative = 1.96, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^2+1\right ) \sqrt {\sqrt {x^4+1}+x^2}}{\sqrt {x^4+1} \left (x^4+x^2-1\right )} \, dx\)

\(\Big \downarrow \) 7279

\(\displaystyle \int \left (\frac {\left (1+\frac {1}{\sqrt {5}}\right ) \sqrt {\sqrt {x^4+1}+x^2}}{\left (2 x^2-\sqrt {5}+1\right ) \sqrt {x^4+1}}+\frac {\left (1-\frac {1}{\sqrt {5}}\right ) \sqrt {\sqrt {x^4+1}+x^2}}{\left (2 x^2+\sqrt {5}+1\right ) \sqrt {x^4+1}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {i \left (1+\sqrt {5}\right ) \arctan \left (\frac {(1+i) \left (\sqrt {2}-i \sqrt {\sqrt {5}-1} x\right )}{\sqrt {2 \left (\sqrt {5}+(-1-2 i)\right )} \sqrt {1+i x^2}}\right )}{4 \sqrt {5 \left ((3+i)-(1+i) \sqrt {5}\right )}}+\frac {i \left (1+\sqrt {5}\right ) \arctan \left (\frac {(1+i) \left (\sqrt {2}+i \sqrt {\sqrt {5}-1} x\right )}{\sqrt {2 \left (\sqrt {5}+(-1-2 i)\right )} \sqrt {1+i x^2}}\right )}{4 \sqrt {5 \left ((3+i)-(1+i) \sqrt {5}\right )}}-\frac {\left (1-\sqrt {5}\right ) \arctan \left (\frac {(1+i) \left (\sqrt {2}-\sqrt {1+\sqrt {5}} x\right )}{\sqrt {-2 \sqrt {5}+(-2-4 i)} \sqrt {1+i x^2}}\right )}{4 \sqrt {(-5-5 i) \left (\sqrt {5}+(2-i)\right )}}+\frac {\left (1-\sqrt {5}\right ) \arctan \left (\frac {(1+i) \left (\sqrt {1+\sqrt {5}} x+\sqrt {2}\right )}{\sqrt {-2 \sqrt {5}+(-2-4 i)} \sqrt {1+i x^2}}\right )}{4 \sqrt {(-5-5 i) \left (\sqrt {5}+(2-i)\right )}}-\frac {\left (\frac {1}{4}-\frac {i}{4}\right ) \left (1+\sqrt {5}\right ) \text {arctanh}\left (\frac {\sqrt {2}-i \sqrt {\sqrt {5}-1} x}{\sqrt {(2+i)-i \sqrt {5}} \sqrt {1-i x^2}}\right )}{\sqrt {(10+10 i) \left (\sqrt {5}+(-2-i)\right )}}+\frac {\left (\frac {1}{4}-\frac {i}{4}\right ) \left (1+\sqrt {5}\right ) \text {arctanh}\left (\frac {\sqrt {2}+i \sqrt {\sqrt {5}-1} x}{\sqrt {(2+i)-i \sqrt {5}} \sqrt {1-i x^2}}\right )}{\sqrt {(10+10 i) \left (\sqrt {5}+(-2-i)\right )}}+\frac {\left (\frac {1}{4}+\frac {i}{4}\right ) \left (1-\sqrt {5}\right ) \text {arctanh}\left (\frac {\sqrt {2}-\sqrt {1+\sqrt {5}} x}{\sqrt {(2+i)+i \sqrt {5}} \sqrt {1-i x^2}}\right )}{\sqrt {(10+10 i) \left (\sqrt {5}+(2+i)\right )}}-\frac {\left (\frac {1}{4}+\frac {i}{4}\right ) \left (1-\sqrt {5}\right ) \text {arctanh}\left (\frac {\sqrt {1+\sqrt {5}} x+\sqrt {2}}{\sqrt {(2+i)+i \sqrt {5}} \sqrt {1-i x^2}}\right )}{\sqrt {(10+10 i) \left (\sqrt {5}+(2+i)\right )}}\)

input
Int[((1 + x^2)*Sqrt[x^2 + Sqrt[1 + x^4]])/(Sqrt[1 + x^4]*(-1 + x^2 + x^4)) 
,x]
 
output
((-1/4*I)*(1 + Sqrt[5])*ArcTan[((1 + I)*(Sqrt[2] - I*Sqrt[-1 + Sqrt[5]]*x) 
)/(Sqrt[2*((-1 - 2*I) + Sqrt[5])]*Sqrt[1 + I*x^2])])/Sqrt[5*((3 + I) - (1 
+ I)*Sqrt[5])] + ((I/4)*(1 + Sqrt[5])*ArcTan[((1 + I)*(Sqrt[2] + I*Sqrt[-1 
 + Sqrt[5]]*x))/(Sqrt[2*((-1 - 2*I) + Sqrt[5])]*Sqrt[1 + I*x^2])])/Sqrt[5* 
((3 + I) - (1 + I)*Sqrt[5])] - ((1 - Sqrt[5])*ArcTan[((1 + I)*(Sqrt[2] - S 
qrt[1 + Sqrt[5]]*x))/(Sqrt[(-2 - 4*I) - 2*Sqrt[5]]*Sqrt[1 + I*x^2])])/(4*S 
qrt[(-5 - 5*I)*((2 - I) + Sqrt[5])]) + ((1 - Sqrt[5])*ArcTan[((1 + I)*(Sqr 
t[2] + Sqrt[1 + Sqrt[5]]*x))/(Sqrt[(-2 - 4*I) - 2*Sqrt[5]]*Sqrt[1 + I*x^2] 
)])/(4*Sqrt[(-5 - 5*I)*((2 - I) + Sqrt[5])]) - ((1/4 - I/4)*(1 + Sqrt[5])* 
ArcTanh[(Sqrt[2] - I*Sqrt[-1 + Sqrt[5]]*x)/(Sqrt[(2 + I) - I*Sqrt[5]]*Sqrt 
[1 - I*x^2])])/Sqrt[(10 + 10*I)*((-2 - I) + Sqrt[5])] + ((1/4 - I/4)*(1 + 
Sqrt[5])*ArcTanh[(Sqrt[2] + I*Sqrt[-1 + Sqrt[5]]*x)/(Sqrt[(2 + I) - I*Sqrt 
[5]]*Sqrt[1 - I*x^2])])/Sqrt[(10 + 10*I)*((-2 - I) + Sqrt[5])] + ((1/4 + I 
/4)*(1 - Sqrt[5])*ArcTanh[(Sqrt[2] - Sqrt[1 + Sqrt[5]]*x)/(Sqrt[(2 + I) + 
I*Sqrt[5]]*Sqrt[1 - I*x^2])])/Sqrt[(10 + 10*I)*((2 + I) + Sqrt[5])] - ((1/ 
4 + I/4)*(1 - Sqrt[5])*ArcTanh[(Sqrt[2] + Sqrt[1 + Sqrt[5]]*x)/(Sqrt[(2 + 
I) + I*Sqrt[5]]*Sqrt[1 - I*x^2])])/Sqrt[(10 + 10*I)*((2 + I) + Sqrt[5])]
 

3.30.40.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
3.30.40.4 Maple [N/A] (verified)

Not integrable

Time = 0.02 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.10

\[\int \frac {\left (x^{2}+1\right ) \sqrt {x^{2}+\sqrt {x^{4}+1}}}{\sqrt {x^{4}+1}\, \left (x^{4}+x^{2}-1\right )}d x\]

input
int((x^2+1)*(x^2+(x^4+1)^(1/2))^(1/2)/(x^4+1)^(1/2)/(x^4+x^2-1),x)
 
output
int((x^2+1)*(x^2+(x^4+1)^(1/2))^(1/2)/(x^4+1)^(1/2)/(x^4+x^2-1),x)
 
3.30.40.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 16.26 (sec) , antiderivative size = 10165, normalized size of antiderivative = 29.13 \[ \int \frac {\left (1+x^2\right ) \sqrt {x^2+\sqrt {1+x^4}}}{\sqrt {1+x^4} \left (-1+x^2+x^4\right )} \, dx=\text {Too large to display} \]

input
integrate((x^2+1)*(x^2+(x^4+1)^(1/2))^(1/2)/(x^4+1)^(1/2)/(x^4+x^2-1),x, a 
lgorithm="fricas")
 
output
Too large to include
 
3.30.40.6 Sympy [N/A]

Not integrable

Time = 24.24 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.11 \[ \int \frac {\left (1+x^2\right ) \sqrt {x^2+\sqrt {1+x^4}}}{\sqrt {1+x^4} \left (-1+x^2+x^4\right )} \, dx=\int \frac {\left (x^{2} + 1\right ) \sqrt {x^{2} + \sqrt {x^{4} + 1}}}{\sqrt {x^{4} + 1} \left (x^{4} + x^{2} - 1\right )}\, dx \]

input
integrate((x**2+1)*(x**2+(x**4+1)**(1/2))**(1/2)/(x**4+1)**(1/2)/(x**4+x** 
2-1),x)
 
output
Integral((x**2 + 1)*sqrt(x**2 + sqrt(x**4 + 1))/(sqrt(x**4 + 1)*(x**4 + x* 
*2 - 1)), x)
 
3.30.40.7 Maxima [N/A]

Not integrable

Time = 0.32 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.11 \[ \int \frac {\left (1+x^2\right ) \sqrt {x^2+\sqrt {1+x^4}}}{\sqrt {1+x^4} \left (-1+x^2+x^4\right )} \, dx=\int { \frac {\sqrt {x^{2} + \sqrt {x^{4} + 1}} {\left (x^{2} + 1\right )}}{{\left (x^{4} + x^{2} - 1\right )} \sqrt {x^{4} + 1}} \,d x } \]

input
integrate((x^2+1)*(x^2+(x^4+1)^(1/2))^(1/2)/(x^4+1)^(1/2)/(x^4+x^2-1),x, a 
lgorithm="maxima")
 
output
integrate(sqrt(x^2 + sqrt(x^4 + 1))*(x^2 + 1)/((x^4 + x^2 - 1)*sqrt(x^4 + 
1)), x)
 
3.30.40.8 Giac [N/A]

Not integrable

Time = 0.35 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.11 \[ \int \frac {\left (1+x^2\right ) \sqrt {x^2+\sqrt {1+x^4}}}{\sqrt {1+x^4} \left (-1+x^2+x^4\right )} \, dx=\int { \frac {\sqrt {x^{2} + \sqrt {x^{4} + 1}} {\left (x^{2} + 1\right )}}{{\left (x^{4} + x^{2} - 1\right )} \sqrt {x^{4} + 1}} \,d x } \]

input
integrate((x^2+1)*(x^2+(x^4+1)^(1/2))^(1/2)/(x^4+1)^(1/2)/(x^4+x^2-1),x, a 
lgorithm="giac")
 
output
integrate(sqrt(x^2 + sqrt(x^4 + 1))*(x^2 + 1)/((x^4 + x^2 - 1)*sqrt(x^4 + 
1)), x)
 
3.30.40.9 Mupad [N/A]

Not integrable

Time = 7.50 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.11 \[ \int \frac {\left (1+x^2\right ) \sqrt {x^2+\sqrt {1+x^4}}}{\sqrt {1+x^4} \left (-1+x^2+x^4\right )} \, dx=\int \frac {\left (x^2+1\right )\,\sqrt {\sqrt {x^4+1}+x^2}}{\sqrt {x^4+1}\,\left (x^4+x^2-1\right )} \,d x \]

input
int(((x^2 + 1)*((x^4 + 1)^(1/2) + x^2)^(1/2))/((x^4 + 1)^(1/2)*(x^2 + x^4 
- 1)),x)
 
output
int(((x^2 + 1)*((x^4 + 1)^(1/2) + x^2)^(1/2))/((x^4 + 1)^(1/2)*(x^2 + x^4 
- 1)), x)