3.31.24 \(\int \frac {(1+x^4) \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{\sqrt {1+x^2} (1-x^4)} \, dx\) [3024]

3.31.24.1 Optimal result
3.31.24.2 Mathematica [A] (verified)
3.31.24.3 Rubi [F]
3.31.24.4 Maple [N/A] (verified)
3.31.24.5 Fricas [C] (verification not implemented)
3.31.24.6 Sympy [N/A]
3.31.24.7 Maxima [N/A]
3.31.24.8 Giac [F(-2)]
3.31.24.9 Mupad [N/A]

3.31.24.1 Optimal result

Integrand size = 45, antiderivative size = 428 \[ \int \frac {\left (1+x^4\right ) \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{\sqrt {1+x^2} \left (1-x^4\right )} \, dx=\frac {\left (-5-4 x^2\right ) \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-4 x \sqrt {1+x^2} \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{1+x^2+x \sqrt {1+x^2}}+4 \text {arctanh}\left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}\right )-\frac {1}{2} \text {RootSum}\left [-1-8 \text {$\#$1}^2-8 \text {$\#$1}^3+14 \text {$\#$1}^4+32 \text {$\#$1}^5+24 \text {$\#$1}^6+8 \text {$\#$1}^7+\text {$\#$1}^8\&,\frac {\log \left (-1+\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right )}{-1+\text {$\#$1}+3 \text {$\#$1}^2+\text {$\#$1}^3}\&\right ]+\frac {1}{4} \text {RootSum}\left [1+16 \text {$\#$1}^4+32 \text {$\#$1}^5+24 \text {$\#$1}^6+8 \text {$\#$1}^7+\text {$\#$1}^8\&,\frac {\log \left (-1+\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right )}{8 \text {$\#$1}^3+20 \text {$\#$1}^4+18 \text {$\#$1}^5+7 \text {$\#$1}^6+\text {$\#$1}^7}\&\right ]+\frac {1}{2} \text {RootSum}\left [-1+8 \text {$\#$1}^2+8 \text {$\#$1}^3+18 \text {$\#$1}^4+32 \text {$\#$1}^5+24 \text {$\#$1}^6+8 \text {$\#$1}^7+\text {$\#$1}^8\&,\frac {\log \left (-1+\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right )+\log \left (-1+\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}}{1+4 \text {$\#$1}^2+4 \text {$\#$1}^3+\text {$\#$1}^4}\&\right ] \]

output
Unintegrable
 
3.31.24.2 Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 306, normalized size of antiderivative = 0.71 \[ \int \frac {\left (1+x^4\right ) \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{\sqrt {1+x^2} \left (1-x^4\right )} \, dx=-\frac {\left (5+4 x^2+4 x \sqrt {1+x^2}\right ) \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{1+x^2+x \sqrt {1+x^2}}+4 \text {arctanh}\left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}\right )-\frac {1}{2} \text {RootSum}\left [-2+4 \text {$\#$1}^4-4 \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right )}{-2 \text {$\#$1}+\text {$\#$1}^3}\&\right ]+\frac {1}{4} \text {RootSum}\left [2-4 \text {$\#$1}^2+6 \text {$\#$1}^4-4 \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right )}{-\text {$\#$1}+3 \text {$\#$1}^3-3 \text {$\#$1}^5+\text {$\#$1}^7}\&\right ]+\frac {1}{2} \text {RootSum}\left [2-8 \text {$\#$1}^2+8 \text {$\#$1}^4-4 \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}}{2-2 \text {$\#$1}^2+\text {$\#$1}^4}\&\right ] \]

input
Integrate[((1 + x^4)*Sqrt[1 + Sqrt[x + Sqrt[1 + x^2]]])/(Sqrt[1 + x^2]*(1 
- x^4)),x]
 
output
-(((5 + 4*x^2 + 4*x*Sqrt[1 + x^2])*Sqrt[1 + Sqrt[x + Sqrt[1 + x^2]]])/(1 + 
 x^2 + x*Sqrt[1 + x^2])) + 4*ArcTanh[Sqrt[1 + Sqrt[x + Sqrt[1 + x^2]]]] - 
RootSum[-2 + 4*#1^4 - 4*#1^6 + #1^8 & , Log[Sqrt[1 + Sqrt[x + Sqrt[1 + x^2 
]]] - #1]/(-2*#1 + #1^3) & ]/2 + RootSum[2 - 4*#1^2 + 6*#1^4 - 4*#1^6 + #1 
^8 & , Log[Sqrt[1 + Sqrt[x + Sqrt[1 + x^2]]] - #1]/(-#1 + 3*#1^3 - 3*#1^5 
+ #1^7) & ]/4 + RootSum[2 - 8*#1^2 + 8*#1^4 - 4*#1^6 + #1^8 & , (Log[Sqrt[ 
1 + Sqrt[x + Sqrt[1 + x^2]]] - #1]*#1)/(2 - 2*#1^2 + #1^4) & ]/2
 
3.31.24.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^4+1\right ) \sqrt {\sqrt {\sqrt {x^2+1}+x}+1}}{\sqrt {x^2+1} \left (1-x^4\right )} \, dx\)

\(\Big \downarrow \) 1388

\(\displaystyle \int \frac {\left (x^4+1\right ) \sqrt {\sqrt {\sqrt {x^2+1}+x}+1}}{\left (1-x^2\right ) \left (x^2+1\right )^{3/2}}dx\)

\(\Big \downarrow \) 7276

\(\displaystyle \int \left (-\frac {\sqrt {\sqrt {\sqrt {x^2+1}+x}+1} x^2}{\left (x^2+1\right )^{3/2}}+\frac {2 \sqrt {\sqrt {\sqrt {x^2+1}+x}+1}}{\left (1-x^2\right ) \left (x^2+1\right )^{3/2}}-\frac {\sqrt {\sqrt {\sqrt {x^2+1}+x}+1}}{\left (x^2+1\right )^{3/2}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\int \frac {\sqrt {\sqrt {x+\sqrt {x^2+1}}+1}}{\left (x^2+1\right )^{3/2}}dx+\int \frac {\sqrt {\sqrt {x+\sqrt {x^2+1}}+1}}{(1-x) \left (x^2+1\right )^{3/2}}dx-\int \frac {x^2 \sqrt {\sqrt {x+\sqrt {x^2+1}}+1}}{\left (x^2+1\right )^{3/2}}dx+\int \frac {\sqrt {\sqrt {x+\sqrt {x^2+1}}+1}}{(x+1) \left (x^2+1\right )^{3/2}}dx\)

input
Int[((1 + x^4)*Sqrt[1 + Sqrt[x + Sqrt[1 + x^2]]])/(Sqrt[1 + x^2]*(1 - x^4) 
),x]
 
output
$Aborted
 

3.31.24.3.1 Defintions of rubi rules used

rule 1388
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), 
x_Symbol] :> Int[u*(d + e*x^n)^(p + q)*(a/d + (c/e)*x^n)^p, x] /; FreeQ[{a, 
 c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 + a*e^2, 0] && (Integer 
Q[p] || (GtQ[a, 0] && GtQ[d, 0]))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.31.24.4 Maple [N/A] (verified)

Not integrable

Time = 0.00 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.09

\[\int \frac {\left (x^{4}+1\right ) \sqrt {1+\sqrt {x +\sqrt {x^{2}+1}}}}{\sqrt {x^{2}+1}\, \left (-x^{4}+1\right )}d x\]

input
int((x^4+1)*(1+(x+(x^2+1)^(1/2))^(1/2))^(1/2)/(x^2+1)^(1/2)/(-x^4+1),x)
 
output
int((x^4+1)*(1+(x+(x^2+1)^(1/2))^(1/2))^(1/2)/(x^2+1)^(1/2)/(-x^4+1),x)
 
3.31.24.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.35 (sec) , antiderivative size = 1598, normalized size of antiderivative = 3.73 \[ \int \frac {\left (1+x^4\right ) \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{\sqrt {1+x^2} \left (1-x^4\right )} \, dx=\text {Too large to display} \]

input
integrate((x^4+1)*(1+(x+(x^2+1)^(1/2))^(1/2))^(1/2)/(x^2+1)^(1/2)/(-x^4+1) 
,x, algorithm="fricas")
 
output
1/8*(sqrt(2)*(x^2 + 1)*sqrt(sqrt(2*I*sqrt(2) + 1) - 1)*log(((sqrt(2) - I)* 
sqrt(2*I*sqrt(2) + 1) + 3*sqrt(2) - 3*I)*sqrt(sqrt(2*I*sqrt(2) + 1) - 1) + 
 6*sqrt(sqrt(x + sqrt(x^2 + 1)) + 1)) - sqrt(2)*(x^2 + 1)*sqrt(sqrt(2*I*sq 
rt(2) + 1) - 1)*log(-((sqrt(2) - I)*sqrt(2*I*sqrt(2) + 1) + 3*sqrt(2) - 3* 
I)*sqrt(sqrt(2*I*sqrt(2) + 1) - 1) + 6*sqrt(sqrt(x + sqrt(x^2 + 1)) + 1)) 
- sqrt(2)*(x^2 + 1)*sqrt(-sqrt(2*I*sqrt(2) + 1) - 1)*log(((sqrt(2) - I)*sq 
rt(2*I*sqrt(2) + 1) - 3*sqrt(2) + 3*I)*sqrt(-sqrt(2*I*sqrt(2) + 1) - 1) + 
6*sqrt(sqrt(x + sqrt(x^2 + 1)) + 1)) + sqrt(2)*(x^2 + 1)*sqrt(-sqrt(2*I*sq 
rt(2) + 1) - 1)*log(-((sqrt(2) - I)*sqrt(2*I*sqrt(2) + 1) - 3*sqrt(2) + 3* 
I)*sqrt(-sqrt(2*I*sqrt(2) + 1) - 1) + 6*sqrt(sqrt(x + sqrt(x^2 + 1)) + 1)) 
 + sqrt(2)*(x^2 + 1)*sqrt(sqrt(-2*I*sqrt(2) + 1) - 1)*log(((sqrt(2) + I)*s 
qrt(-2*I*sqrt(2) + 1) + 3*sqrt(2) + 3*I)*sqrt(sqrt(-2*I*sqrt(2) + 1) - 1) 
+ 6*sqrt(sqrt(x + sqrt(x^2 + 1)) + 1)) - sqrt(2)*(x^2 + 1)*sqrt(sqrt(-2*I* 
sqrt(2) + 1) - 1)*log(-((sqrt(2) + I)*sqrt(-2*I*sqrt(2) + 1) + 3*sqrt(2) + 
 3*I)*sqrt(sqrt(-2*I*sqrt(2) + 1) - 1) + 6*sqrt(sqrt(x + sqrt(x^2 + 1)) + 
1)) - sqrt(2)*(x^2 + 1)*sqrt(-sqrt(-2*I*sqrt(2) + 1) - 1)*log(((sqrt(2) + 
I)*sqrt(-2*I*sqrt(2) + 1) - 3*sqrt(2) - 3*I)*sqrt(-sqrt(-2*I*sqrt(2) + 1) 
- 1) + 6*sqrt(sqrt(x + sqrt(x^2 + 1)) + 1)) + sqrt(2)*(x^2 + 1)*sqrt(-sqrt 
(-2*I*sqrt(2) + 1) - 1)*log(-((sqrt(2) + I)*sqrt(-2*I*sqrt(2) + 1) - 3*sqr 
t(2) - 3*I)*sqrt(-sqrt(-2*I*sqrt(2) + 1) - 1) + 6*sqrt(sqrt(x + sqrt(x^...
 
3.31.24.6 Sympy [N/A]

Not integrable

Time = 32.35 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.20 \[ \int \frac {\left (1+x^4\right ) \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{\sqrt {1+x^2} \left (1-x^4\right )} \, dx=- \int \frac {\sqrt {\sqrt {x + \sqrt {x^{2} + 1}} + 1}}{x^{4} \sqrt {x^{2} + 1} - \sqrt {x^{2} + 1}}\, dx - \int \frac {x^{4} \sqrt {\sqrt {x + \sqrt {x^{2} + 1}} + 1}}{x^{4} \sqrt {x^{2} + 1} - \sqrt {x^{2} + 1}}\, dx \]

input
integrate((x**4+1)*(1+(x+(x**2+1)**(1/2))**(1/2))**(1/2)/(x**2+1)**(1/2)/( 
-x**4+1),x)
 
output
-Integral(sqrt(sqrt(x + sqrt(x**2 + 1)) + 1)/(x**4*sqrt(x**2 + 1) - sqrt(x 
**2 + 1)), x) - Integral(x**4*sqrt(sqrt(x + sqrt(x**2 + 1)) + 1)/(x**4*sqr 
t(x**2 + 1) - sqrt(x**2 + 1)), x)
 
3.31.24.7 Maxima [N/A]

Not integrable

Time = 0.96 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.09 \[ \int \frac {\left (1+x^4\right ) \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{\sqrt {1+x^2} \left (1-x^4\right )} \, dx=\int { -\frac {{\left (x^{4} + 1\right )} \sqrt {\sqrt {x + \sqrt {x^{2} + 1}} + 1}}{{\left (x^{4} - 1\right )} \sqrt {x^{2} + 1}} \,d x } \]

input
integrate((x^4+1)*(1+(x+(x^2+1)^(1/2))^(1/2))^(1/2)/(x^2+1)^(1/2)/(-x^4+1) 
,x, algorithm="maxima")
 
output
-integrate((x^4 + 1)*sqrt(sqrt(x + sqrt(x^2 + 1)) + 1)/((x^4 - 1)*sqrt(x^2 
 + 1)), x)
 
3.31.24.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\left (1+x^4\right ) \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{\sqrt {1+x^2} \left (1-x^4\right )} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate((x^4+1)*(1+(x+(x^2+1)^(1/2))^(1/2))^(1/2)/(x^2+1)^(1/2)/(-x^4+1) 
,x, algorithm="giac")
 
output
Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:Unable to divide, perhaps due to rounding error%%%{%%{p 
oly1[-16232886178711429450219333683647001563848436365999727949750274764264 
752867482521
 
3.31.24.9 Mupad [N/A]

Not integrable

Time = 0.00 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.09 \[ \int \frac {\left (1+x^4\right ) \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{\sqrt {1+x^2} \left (1-x^4\right )} \, dx=\int -\frac {\sqrt {\sqrt {x+\sqrt {x^2+1}}+1}\,\left (x^4+1\right )}{\sqrt {x^2+1}\,\left (x^4-1\right )} \,d x \]

input
int(-(((x + (x^2 + 1)^(1/2))^(1/2) + 1)^(1/2)*(x^4 + 1))/((x^2 + 1)^(1/2)* 
(x^4 - 1)),x)
 
output
int(-(((x + (x^2 + 1)^(1/2))^(1/2) + 1)^(1/2)*(x^4 + 1))/((x^2 + 1)^(1/2)* 
(x^4 - 1)), x)