3.31.38 \(\int \frac {x^2}{(1+x^4) \sqrt [4]{-x^2+x^6}} \, dx\) [3038]

3.31.38.1 Optimal result
3.31.38.2 Mathematica [C] (verified)
3.31.38.3 Rubi [C] (verified)
3.31.38.4 Maple [A] (verified)
3.31.38.5 Fricas [C] (verification not implemented)
3.31.38.6 Sympy [F]
3.31.38.7 Maxima [F]
3.31.38.8 Giac [F]
3.31.38.9 Mupad [F(-1)]

3.31.38.1 Optimal result

Integrand size = 24, antiderivative size = 452 \[ \int \frac {x^2}{\left (1+x^4\right ) \sqrt [4]{-x^2+x^6}} \, dx=-\frac {1}{8} \sqrt {1+\sqrt {2}} \arctan \left (\frac {\sqrt {2-\sqrt {2}} x}{-\sqrt {2+\sqrt {2}} x+2^{3/4} \sqrt [4]{-x^2+x^6}}\right )-\frac {1}{8} \sqrt {1+\sqrt {2}} \arctan \left (\frac {\sqrt {2-\sqrt {2}} x}{\sqrt {2+\sqrt {2}} x+2^{3/4} \sqrt [4]{-x^2+x^6}}\right )+\frac {1}{8} \sqrt {-1+\sqrt {2}} \arctan \left (\frac {2^{3/4} \sqrt {2+\sqrt {2}} x \sqrt [4]{-x^2+x^6}}{-2 x^2+\sqrt {2} \sqrt {-x^2+x^6}}\right )-\frac {1}{8} \sqrt {1+\sqrt {2}} \text {arctanh}\left (\frac {\frac {\sqrt [4]{2} x^2}{\sqrt {2-\sqrt {2}}}+\frac {\sqrt {-x^2+x^6}}{\sqrt [4]{2} \sqrt {2-\sqrt {2}}}}{x \sqrt [4]{-x^2+x^6}}\right )-\frac {1}{16} \sqrt {-1+\sqrt {2}} \log \left (-2 x^2+2^{3/4} \sqrt {2+\sqrt {2}} x \sqrt [4]{-x^2+x^6}-\sqrt {2} \sqrt {-x^2+x^6}\right )+\frac {1}{16} \sqrt {-1+\sqrt {2}} \log \left (2 \sqrt {2-\sqrt {2}} x^2+2 \sqrt [4]{2} x \sqrt [4]{-x^2+x^6}+\sqrt {4-2 \sqrt {2}} \sqrt {-x^2+x^6}\right ) \]

output
-1/8*(1+2^(1/2))^(1/2)*arctan((2-2^(1/2))^(1/2)*x/(-(2+2^(1/2))^(1/2)*x+2^ 
(3/4)*(x^6-x^2)^(1/4)))-1/8*(1+2^(1/2))^(1/2)*arctan((2-2^(1/2))^(1/2)*x/( 
(2+2^(1/2))^(1/2)*x+2^(3/4)*(x^6-x^2)^(1/4)))+1/8*(2^(1/2)-1)^(1/2)*arctan 
(2^(3/4)*(2+2^(1/2))^(1/2)*x*(x^6-x^2)^(1/4)/(-2*x^2+2^(1/2)*(x^6-x^2)^(1/ 
2)))-1/8*(1+2^(1/2))^(1/2)*arctanh((2^(1/4)*x^2/(2-2^(1/2))^(1/2)+1/2*(x^6 
-x^2)^(1/2)*2^(3/4)/(2-2^(1/2))^(1/2))/x/(x^6-x^2)^(1/4))-1/16*(2^(1/2)-1) 
^(1/2)*ln(-2*x^2+2^(3/4)*(2+2^(1/2))^(1/2)*x*(x^6-x^2)^(1/4)-2^(1/2)*(x^6- 
x^2)^(1/2))+1/16*(2^(1/2)-1)^(1/2)*ln(2*(2-2^(1/2))^(1/2)*x^2+2*2^(1/4)*x* 
(x^6-x^2)^(1/4)+(4-2*2^(1/2))^(1/2)*(x^6-x^2)^(1/2))
 
3.31.38.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.00 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.36 \[ \int \frac {x^2}{\left (1+x^4\right ) \sqrt [4]{-x^2+x^6}} \, dx=\frac {\sqrt {x} \sqrt [4]{-1+x^4} \left (-\sqrt {1-i} \arctan \left (\frac {\sqrt {-1-i} \sqrt {x}}{\sqrt [4]{-1+x^4}}\right )-\sqrt {1+i} \arctan \left (\frac {\sqrt {-1+i} \sqrt {x}}{\sqrt [4]{-1+x^4}}\right )+\sqrt {-1-i} \arctan \left (\frac {\sqrt {1-i} \sqrt {x}}{\sqrt [4]{-1+x^4}}\right )+\sqrt {-1+i} \arctan \left (\frac {\sqrt {1+i} \sqrt {x}}{\sqrt [4]{-1+x^4}}\right )\right )}{4 \sqrt {2} \sqrt [4]{x^2 \left (-1+x^4\right )}} \]

input
Integrate[x^2/((1 + x^4)*(-x^2 + x^6)^(1/4)),x]
 
output
(Sqrt[x]*(-1 + x^4)^(1/4)*(-(Sqrt[1 - I]*ArcTan[(Sqrt[-1 - I]*Sqrt[x])/(-1 
 + x^4)^(1/4)]) - Sqrt[1 + I]*ArcTan[(Sqrt[-1 + I]*Sqrt[x])/(-1 + x^4)^(1/ 
4)] + Sqrt[-1 - I]*ArcTan[(Sqrt[1 - I]*Sqrt[x])/(-1 + x^4)^(1/4)] + Sqrt[- 
1 + I]*ArcTan[(Sqrt[1 + I]*Sqrt[x])/(-1 + x^4)^(1/4)]))/(4*Sqrt[2]*(x^2*(- 
1 + x^4))^(1/4))
 
3.31.38.3 Rubi [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 0.23 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.11, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {1948, 966, 1013, 1012}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\left (x^4+1\right ) \sqrt [4]{x^6-x^2}} \, dx\)

\(\Big \downarrow \) 1948

\(\displaystyle \frac {\sqrt {x} \sqrt [4]{x^4-1} \int \frac {x^{3/2}}{\sqrt [4]{x^4-1} \left (x^4+1\right )}dx}{\sqrt [4]{x^6-x^2}}\)

\(\Big \downarrow \) 966

\(\displaystyle \frac {2 \sqrt {x} \sqrt [4]{x^4-1} \int \frac {x^2}{\sqrt [4]{x^4-1} \left (x^4+1\right )}d\sqrt {x}}{\sqrt [4]{x^6-x^2}}\)

\(\Big \downarrow \) 1013

\(\displaystyle \frac {2 \sqrt {x} \sqrt [4]{1-x^4} \int \frac {x^2}{\sqrt [4]{1-x^4} \left (x^4+1\right )}d\sqrt {x}}{\sqrt [4]{x^6-x^2}}\)

\(\Big \downarrow \) 1012

\(\displaystyle \frac {2 x^3 \sqrt [4]{1-x^4} \operatorname {AppellF1}\left (\frac {5}{8},\frac {1}{4},1,\frac {13}{8},x^4,-x^4\right )}{5 \sqrt [4]{x^6-x^2}}\)

input
Int[x^2/((1 + x^4)*(-x^2 + x^6)^(1/4)),x]
 
output
(2*x^3*(1 - x^4)^(1/4)*AppellF1[5/8, 1/4, 1, 13/8, x^4, -x^4])/(5*(-x^2 + 
x^6)^(1/4))
 

3.31.38.3.1 Defintions of rubi rules used

rule 966
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_) 
)^(q_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k/e   Subst[Int[x^(k*( 
m + 1) - 1)*(a + b*(x^(k*n)/e^n))^p*(c + d*(x^(k*n)/e^n))^q, x], x, (e*x)^( 
1/k)], x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[ 
n, 0] && FractionQ[m] && IntegerQ[p]
 

rule 1012
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^p*c^q*((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m 
+ 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, 
 b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n 
 - 1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 1013
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^ 
n/a))^FracPart[p])   Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; 
 FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] & 
& NeQ[m, n - 1] &&  !(IntegerQ[p] || GtQ[a, 0])
 

rule 1948
Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + 
(d_.)*(x_)^(n_.))^(q_.), x_Symbol] :> Simp[e^IntPart[m]*(e*x)^FracPart[m]*( 
(a*x^j + b*x^(j + n))^FracPart[p]/(x^(FracPart[m] + j*FracPart[p])*(a + b*x 
^n)^FracPart[p]))   Int[x^(m + j*p)*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; 
FreeQ[{a, b, c, d, e, j, m, n, p, q}, x] && EqQ[jn, j + n] &&  !IntegerQ[p] 
 && NeQ[b*c - a*d, 0] &&  !(EqQ[n, 1] && EqQ[j, 1])
 
3.31.38.4 Maple [A] (verified)

Time = 0.00 (sec) , antiderivative size = 384, normalized size of antiderivative = 0.85

method result size
pseudoelliptic \(\frac {\sqrt {2}\, \left (\left (2 \arctan \left (\frac {\sqrt {2+2 \sqrt {2}}\, x +2 \left (x^{6}-x^{2}\right )^{\frac {1}{4}}}{x \sqrt {-2+2 \sqrt {2}}}\right )+\ln \left (\frac {\sqrt {2}\, x^{2}-x \sqrt {-2+2 \sqrt {2}}\, \left (x^{6}-x^{2}\right )^{\frac {1}{4}}+\sqrt {x^{6}-x^{2}}}{x^{2}}\right )-2 \arctan \left (\frac {\sqrt {2+2 \sqrt {2}}\, x -2 \left (x^{6}-x^{2}\right )^{\frac {1}{4}}}{x \sqrt {-2+2 \sqrt {2}}}\right )-\ln \left (\frac {x \sqrt {-2+2 \sqrt {2}}\, \left (x^{6}-x^{2}\right )^{\frac {1}{4}}+\sqrt {2}\, x^{2}+\sqrt {x^{6}-x^{2}}}{x^{2}}\right )\right ) \sqrt {2+2 \sqrt {2}}+\sqrt {\sqrt {2}-1}\, \left (\ln \left (\frac {\sqrt {2+2 \sqrt {2}}\, x \left (x^{6}-x^{2}\right )^{\frac {1}{4}}+\sqrt {2}\, x^{2}+\sqrt {x^{6}-x^{2}}}{x^{2}}\right )-2 \arctan \left (\frac {x \sqrt {-2+2 \sqrt {2}}+2 \left (x^{6}-x^{2}\right )^{\frac {1}{4}}}{\sqrt {2+2 \sqrt {2}}\, x}\right )-\ln \left (\frac {-\sqrt {2+2 \sqrt {2}}\, x \left (x^{6}-x^{2}\right )^{\frac {1}{4}}+\sqrt {2}\, x^{2}+\sqrt {x^{6}-x^{2}}}{x^{2}}\right )+2 \arctan \left (\frac {x \sqrt {-2+2 \sqrt {2}}-2 \left (x^{6}-x^{2}\right )^{\frac {1}{4}}}{\sqrt {2+2 \sqrt {2}}\, x}\right )\right ) \sqrt {2}\right )}{32}\) \(384\)
trager \(\text {Expression too large to display}\) \(2930\)

input
int(x^2/(x^4+1)/(x^6-x^2)^(1/4),x,method=_RETURNVERBOSE)
 
output
1/32*2^(1/2)*((2*arctan(((2+2*2^(1/2))^(1/2)*x+2*(x^6-x^2)^(1/4))/x/(-2+2* 
2^(1/2))^(1/2))+ln((2^(1/2)*x^2-x*(-2+2*2^(1/2))^(1/2)*(x^6-x^2)^(1/4)+(x^ 
6-x^2)^(1/2))/x^2)-2*arctan(((2+2*2^(1/2))^(1/2)*x-2*(x^6-x^2)^(1/4))/x/(- 
2+2*2^(1/2))^(1/2))-ln((x*(-2+2*2^(1/2))^(1/2)*(x^6-x^2)^(1/4)+2^(1/2)*x^2 
+(x^6-x^2)^(1/2))/x^2))*(2+2*2^(1/2))^(1/2)+(2^(1/2)-1)^(1/2)*(ln(((2+2*2^ 
(1/2))^(1/2)*x*(x^6-x^2)^(1/4)+2^(1/2)*x^2+(x^6-x^2)^(1/2))/x^2)-2*arctan( 
(x*(-2+2*2^(1/2))^(1/2)+2*(x^6-x^2)^(1/4))/(2+2*2^(1/2))^(1/2)/x)-ln((-(2+ 
2*2^(1/2))^(1/2)*x*(x^6-x^2)^(1/4)+2^(1/2)*x^2+(x^6-x^2)^(1/2))/x^2)+2*arc 
tan((x*(-2+2*2^(1/2))^(1/2)-2*(x^6-x^2)^(1/4))/(2+2*2^(1/2))^(1/2)/x))*2^( 
1/2))
 
3.31.38.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 12.31 (sec) , antiderivative size = 1089, normalized size of antiderivative = 2.41 \[ \int \frac {x^2}{\left (1+x^4\right ) \sqrt [4]{-x^2+x^6}} \, dx=\text {Too large to display} \]

input
integrate(x^2/(x^4+1)/(x^6-x^2)^(1/4),x, algorithm="fricas")
 
output
1/32*sqrt(2)*sqrt(I + 1)*log(((I + 1)*x^9 - (4*I - 4)*x^7 - (6*I + 6)*x^5 
+ (4*I - 4)*x^3 - 4*sqrt(x^6 - x^2)*(x^5 - 2*I*x^3 - x) - 2*sqrt(I + 1)*(s 
qrt(2)*(x^6 - x^2)^(3/4)*(I*x^4 + 2*x^2 - I) + sqrt(2)*(x^6 - x^2)^(1/4)*( 
-(I + 1)*x^6 + (2*I - 2)*x^4 + (I + 1)*x^2)) + (I + 1)*x)/(x^9 + 2*x^5 + x 
)) - 1/32*sqrt(2)*sqrt(I + 1)*log(((I + 1)*x^9 - (4*I - 4)*x^7 - (6*I + 6) 
*x^5 + (4*I - 4)*x^3 - 4*sqrt(x^6 - x^2)*(x^5 - 2*I*x^3 - x) - 2*sqrt(I + 
1)*(sqrt(2)*(x^6 - x^2)^(3/4)*(-I*x^4 - 2*x^2 + I) + sqrt(2)*((I + 1)*x^6 
- (2*I - 2)*x^4 - (I + 1)*x^2)*(x^6 - x^2)^(1/4)) + (I + 1)*x)/(x^9 + 2*x^ 
5 + x)) - 1/32*sqrt(2)*sqrt(-I + 1)*log((-(I - 1)*x^9 + (4*I + 4)*x^7 + (6 
*I - 6)*x^5 - (4*I + 4)*x^3 - 2*sqrt(2)*sqrt(-I + 1)*(x^6 - x^2)^(3/4)*(I* 
x^4 - 2*x^2 - I) - 2*sqrt(2)*sqrt(-I + 1)*(x^6 - x^2)^(1/4)*(-(I - 1)*x^6 
+ (2*I + 2)*x^4 + (I - 1)*x^2) - 4*sqrt(x^6 - x^2)*(x^5 + 2*I*x^3 - x) - ( 
I - 1)*x)/(x^9 + 2*x^5 + x)) + 1/32*sqrt(2)*sqrt(-I + 1)*log((-(I - 1)*x^9 
 + (4*I + 4)*x^7 + (6*I - 6)*x^5 - (4*I + 4)*x^3 - 2*sqrt(2)*sqrt(-I + 1)* 
(x^6 - x^2)^(3/4)*(-I*x^4 + 2*x^2 + I) - 2*sqrt(2)*sqrt(-I + 1)*(x^6 - x^2 
)^(1/4)*((I - 1)*x^6 - (2*I + 2)*x^4 - (I - 1)*x^2) - 4*sqrt(x^6 - x^2)*(x 
^5 + 2*I*x^3 - x) - (I - 1)*x)/(x^9 + 2*x^5 + x)) - 1/32*sqrt(2)*sqrt(I - 
1)*log(((I - 1)*x^9 - (4*I + 4)*x^7 - (6*I - 6)*x^5 + (4*I + 4)*x^3 - 4*sq 
rt(x^6 - x^2)*(x^5 + 2*I*x^3 - x) - 2*sqrt(I - 1)*(sqrt(2)*(x^6 - x^2)^(3/ 
4)*(I*x^4 - 2*x^2 - I) + sqrt(2)*(x^6 - x^2)^(1/4)*((I - 1)*x^6 - (2*I ...
 
3.31.38.6 Sympy [F]

\[ \int \frac {x^2}{\left (1+x^4\right ) \sqrt [4]{-x^2+x^6}} \, dx=\int \frac {x^{2}}{\sqrt [4]{x^{2} \left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right )} \left (x^{4} + 1\right )}\, dx \]

input
integrate(x**2/(x**4+1)/(x**6-x**2)**(1/4),x)
 
output
Integral(x**2/((x**2*(x - 1)*(x + 1)*(x**2 + 1))**(1/4)*(x**4 + 1)), x)
 
3.31.38.7 Maxima [F]

\[ \int \frac {x^2}{\left (1+x^4\right ) \sqrt [4]{-x^2+x^6}} \, dx=\int { \frac {x^{2}}{{\left (x^{6} - x^{2}\right )}^{\frac {1}{4}} {\left (x^{4} + 1\right )}} \,d x } \]

input
integrate(x^2/(x^4+1)/(x^6-x^2)^(1/4),x, algorithm="maxima")
 
output
integrate(x^2/((x^6 - x^2)^(1/4)*(x^4 + 1)), x)
 
3.31.38.8 Giac [F]

\[ \int \frac {x^2}{\left (1+x^4\right ) \sqrt [4]{-x^2+x^6}} \, dx=\int { \frac {x^{2}}{{\left (x^{6} - x^{2}\right )}^{\frac {1}{4}} {\left (x^{4} + 1\right )}} \,d x } \]

input
integrate(x^2/(x^4+1)/(x^6-x^2)^(1/4),x, algorithm="giac")
 
output
integrate(x^2/((x^6 - x^2)^(1/4)*(x^4 + 1)), x)
 
3.31.38.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (1+x^4\right ) \sqrt [4]{-x^2+x^6}} \, dx=\int \frac {x^2}{\left (x^4+1\right )\,{\left (x^6-x^2\right )}^{1/4}} \,d x \]

input
int(x^2/((x^4 + 1)*(x^6 - x^2)^(1/4)),x)
 
output
int(x^2/((x^4 + 1)*(x^6 - x^2)^(1/4)), x)