3.31.46 \(\int \frac {x^4}{\sqrt [4]{b+a x^4} (b+2 a x^4+2 x^8)} \, dx\) [3046]

3.31.46.1 Optimal result
3.31.46.2 Mathematica [A] (verified)
3.31.46.3 Rubi [A] (verified)
3.31.46.4 Maple [C] (verified)
3.31.46.5 Fricas [F(-1)]
3.31.46.6 Sympy [F]
3.31.46.7 Maxima [F]
3.31.46.8 Giac [F]
3.31.46.9 Mupad [F(-1)]

3.31.46.1 Optimal result

Integrand size = 30, antiderivative size = 456 \[ \int \frac {x^4}{\sqrt [4]{b+a x^4} \left (b+2 a x^4+2 x^8\right )} \, dx=\frac {\left (-1+\sqrt [4]{-1}\right ) \arctan \left (\frac {(-1)^{7/8} \sqrt {2+\sqrt {2}} \sqrt [8]{a^2-2 b} x \sqrt [4]{b+a x^4}}{(-1)^{3/4} \sqrt [4]{a^2-2 b} x^2+\sqrt {b+a x^4}}\right )}{8 \left (a^2-2 b\right )^{5/8}}+\frac {i \left (i \sqrt {2}+\sqrt {2 \left (3+2 \sqrt {2}\right )}\right ) \arctan \left (\frac {(-1)^{7/8} \left (-2+\sqrt {2}\right ) \sqrt [8]{a^2-2 b} x \sqrt [4]{b+a x^4}}{(-1)^{3/4} \sqrt {2-\sqrt {2}} \sqrt [4]{a^2-2 b} x^2+\sqrt {2-\sqrt {2}} \sqrt {b+a x^4}}\right )}{16 \left (a^2-2 b\right )^{5/8}}+\frac {\left (\sqrt {2}-i \sqrt {2 \left (3+2 \sqrt {2}\right )}\right ) \text {arctanh}\left (\frac {(-1)^{7/8} \sqrt [4]{a^2-2 b} x^2-\sqrt [8]{-1} \sqrt {b+a x^4}}{\sqrt {2-\sqrt {2}} \sqrt [8]{a^2-2 b} x \sqrt [4]{b+a x^4}}\right )}{16 \left (a^2-2 b\right )^{5/8}}+\frac {\left (-1+\sqrt [4]{-1}\right ) \text {arctanh}\left (\frac {(-1)^{7/8} \sqrt [4]{a^2-2 b} x^2-\sqrt [8]{-1} \sqrt {b+a x^4}}{\sqrt {2+\sqrt {2}} \sqrt [8]{a^2-2 b} x \sqrt [4]{b+a x^4}}\right )}{8 \left (a^2-2 b\right )^{5/8}} \]

output
1/8*(-1+(-1)^(1/4))*arctan((-1)^(7/8)*(2+2^(1/2))^(1/2)*(a^2-2*b)^(1/8)*x* 
(a*x^4+b)^(1/4)/((-1)^(3/4)*(a^2-2*b)^(1/4)*x^2+(a*x^4+b)^(1/2)))/(a^2-2*b 
)^(5/8)+1/16*I*(I*2^(1/2)+2+2^(1/2))*arctan((-1)^(7/8)*(-2+2^(1/2))*(a^2-2 
*b)^(1/8)*x*(a*x^4+b)^(1/4)/((-1)^(3/4)*(2-2^(1/2))^(1/2)*(a^2-2*b)^(1/4)* 
x^2+(2-2^(1/2))^(1/2)*(a*x^4+b)^(1/2)))/(a^2-2*b)^(5/8)+1/16*(2^(1/2)-I*(2 
+2^(1/2)))*arctanh(((-1)^(7/8)*(a^2-2*b)^(1/4)*x^2-(-1)^(1/8)*(a*x^4+b)^(1 
/2))/(2-2^(1/2))^(1/2)/(a^2-2*b)^(1/8)/x/(a*x^4+b)^(1/4))/(a^2-2*b)^(5/8)+ 
1/8*(-1+(-1)^(1/4))*arctanh(((-1)^(7/8)*(a^2-2*b)^(1/4)*x^2-(-1)^(1/8)*(a* 
x^4+b)^(1/2))/(2+2^(1/2))^(1/2)/(a^2-2*b)^(1/8)/x/(a*x^4+b)^(1/4))/(a^2-2* 
b)^(5/8)
 
3.31.46.2 Mathematica [A] (verified)

Time = 10.51 (sec) , antiderivative size = 418, normalized size of antiderivative = 0.92 \[ \int \frac {x^4}{\sqrt [4]{b+a x^4} \left (b+2 a x^4+2 x^8\right )} \, dx=\frac {-\frac {\sqrt [4]{a-\sqrt {a^2-2 b}} \arctan \left (\frac {\sqrt [4]{a^2-a \sqrt {a^2-2 b}-2 b} x}{\sqrt [4]{a-\sqrt {a^2-2 b}} \sqrt [4]{b+a x^4}}\right )}{\sqrt [4]{a^2-a \sqrt {a^2-2 b}-2 b}}+\frac {\sqrt [4]{a+\sqrt {a^2-2 b}} \arctan \left (\frac {\sqrt [4]{a^2+a \sqrt {a^2-2 b}-2 b} x}{\sqrt [4]{a+\sqrt {a^2-2 b}} \sqrt [4]{b+a x^4}}\right )}{\sqrt [4]{a^2+a \sqrt {a^2-2 b}-2 b}}-\frac {\sqrt [4]{a-\sqrt {a^2-2 b}} \text {arctanh}\left (\frac {\sqrt [4]{a^2-a \sqrt {a^2-2 b}-2 b} x}{\sqrt [4]{a-\sqrt {a^2-2 b}} \sqrt [4]{b+a x^4}}\right )}{\sqrt [4]{a^2-a \sqrt {a^2-2 b}-2 b}}+\frac {\sqrt [4]{a+\sqrt {a^2-2 b}} \text {arctanh}\left (\frac {\sqrt [4]{a^2+a \sqrt {a^2-2 b}-2 b} x}{\sqrt [4]{a+\sqrt {a^2-2 b}} \sqrt [4]{b+a x^4}}\right )}{\sqrt [4]{a^2+a \sqrt {a^2-2 b}-2 b}}}{4 \sqrt {a^2-2 b}} \]

input
Integrate[x^4/((b + a*x^4)^(1/4)*(b + 2*a*x^4 + 2*x^8)),x]
 
output
(-(((a - Sqrt[a^2 - 2*b])^(1/4)*ArcTan[((a^2 - a*Sqrt[a^2 - 2*b] - 2*b)^(1 
/4)*x)/((a - Sqrt[a^2 - 2*b])^(1/4)*(b + a*x^4)^(1/4))])/(a^2 - a*Sqrt[a^2 
 - 2*b] - 2*b)^(1/4)) + ((a + Sqrt[a^2 - 2*b])^(1/4)*ArcTan[((a^2 + a*Sqrt 
[a^2 - 2*b] - 2*b)^(1/4)*x)/((a + Sqrt[a^2 - 2*b])^(1/4)*(b + a*x^4)^(1/4) 
)])/(a^2 + a*Sqrt[a^2 - 2*b] - 2*b)^(1/4) - ((a - Sqrt[a^2 - 2*b])^(1/4)*A 
rcTanh[((a^2 - a*Sqrt[a^2 - 2*b] - 2*b)^(1/4)*x)/((a - Sqrt[a^2 - 2*b])^(1 
/4)*(b + a*x^4)^(1/4))])/(a^2 - a*Sqrt[a^2 - 2*b] - 2*b)^(1/4) + ((a + Sqr 
t[a^2 - 2*b])^(1/4)*ArcTanh[((a^2 + a*Sqrt[a^2 - 2*b] - 2*b)^(1/4)*x)/((a 
+ Sqrt[a^2 - 2*b])^(1/4)*(b + a*x^4)^(1/4))])/(a^2 + a*Sqrt[a^2 - 2*b] - 2 
*b)^(1/4))/(4*Sqrt[a^2 - 2*b])
 
3.31.46.3 Rubi [A] (verified)

Time = 0.88 (sec) , antiderivative size = 457, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {1852, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4}{\sqrt [4]{a x^4+b} \left (2 a x^4+b+2 x^8\right )} \, dx\)

\(\Big \downarrow \) 1852

\(\displaystyle \int \left (\frac {1-\frac {a}{\sqrt {a^2-2 b}}}{\left (-2 \sqrt {a^2-2 b}+2 a+4 x^4\right ) \sqrt [4]{a x^4+b}}+\frac {\frac {a}{\sqrt {a^2-2 b}}+1}{\left (2 \sqrt {a^2-2 b}+2 a+4 x^4\right ) \sqrt [4]{a x^4+b}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\sqrt [4]{a-\sqrt {a^2-2 b}} \arctan \left (\frac {x \sqrt [4]{-a \sqrt {a^2-2 b}+a^2-2 b}}{\sqrt [4]{a-\sqrt {a^2-2 b}} \sqrt [4]{a x^4+b}}\right )}{4 \sqrt {a^2-2 b} \sqrt [4]{-a \sqrt {a^2-2 b}+a^2-2 b}}+\frac {\sqrt [4]{\sqrt {a^2-2 b}+a} \arctan \left (\frac {x \sqrt [4]{a \sqrt {a^2-2 b}+a^2-2 b}}{\sqrt [4]{\sqrt {a^2-2 b}+a} \sqrt [4]{a x^4+b}}\right )}{4 \sqrt {a^2-2 b} \sqrt [4]{a \sqrt {a^2-2 b}+a^2-2 b}}-\frac {\sqrt [4]{a-\sqrt {a^2-2 b}} \text {arctanh}\left (\frac {x \sqrt [4]{-a \sqrt {a^2-2 b}+a^2-2 b}}{\sqrt [4]{a-\sqrt {a^2-2 b}} \sqrt [4]{a x^4+b}}\right )}{4 \sqrt {a^2-2 b} \sqrt [4]{-a \sqrt {a^2-2 b}+a^2-2 b}}+\frac {\sqrt [4]{\sqrt {a^2-2 b}+a} \text {arctanh}\left (\frac {x \sqrt [4]{a \sqrt {a^2-2 b}+a^2-2 b}}{\sqrt [4]{\sqrt {a^2-2 b}+a} \sqrt [4]{a x^4+b}}\right )}{4 \sqrt {a^2-2 b} \sqrt [4]{a \sqrt {a^2-2 b}+a^2-2 b}}\)

input
Int[x^4/((b + a*x^4)^(1/4)*(b + 2*a*x^4 + 2*x^8)),x]
 
output
-1/4*((a - Sqrt[a^2 - 2*b])^(1/4)*ArcTan[((a^2 - a*Sqrt[a^2 - 2*b] - 2*b)^ 
(1/4)*x)/((a - Sqrt[a^2 - 2*b])^(1/4)*(b + a*x^4)^(1/4))])/(Sqrt[a^2 - 2*b 
]*(a^2 - a*Sqrt[a^2 - 2*b] - 2*b)^(1/4)) + ((a + Sqrt[a^2 - 2*b])^(1/4)*Ar 
cTan[((a^2 + a*Sqrt[a^2 - 2*b] - 2*b)^(1/4)*x)/((a + Sqrt[a^2 - 2*b])^(1/4 
)*(b + a*x^4)^(1/4))])/(4*Sqrt[a^2 - 2*b]*(a^2 + a*Sqrt[a^2 - 2*b] - 2*b)^ 
(1/4)) - ((a - Sqrt[a^2 - 2*b])^(1/4)*ArcTanh[((a^2 - a*Sqrt[a^2 - 2*b] - 
2*b)^(1/4)*x)/((a - Sqrt[a^2 - 2*b])^(1/4)*(b + a*x^4)^(1/4))])/(4*Sqrt[a^ 
2 - 2*b]*(a^2 - a*Sqrt[a^2 - 2*b] - 2*b)^(1/4)) + ((a + Sqrt[a^2 - 2*b])^( 
1/4)*ArcTanh[((a^2 + a*Sqrt[a^2 - 2*b] - 2*b)^(1/4)*x)/((a + Sqrt[a^2 - 2* 
b])^(1/4)*(b + a*x^4)^(1/4))])/(4*Sqrt[a^2 - 2*b]*(a^2 + a*Sqrt[a^2 - 2*b] 
 - 2*b)^(1/4))
 

3.31.46.3.1 Defintions of rubi rules used

rule 1852
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^( 
n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[(d + e*x^n)^q, ( 
f*x)^m/(a + b*x^n + c*x^(2*n)), x], x] /; FreeQ[{a, b, c, d, e, f, q, n}, x 
] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] &&  !IntegerQ[q] && 
IntegerQ[m]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.31.46.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.27 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.09

method result size
pseudoelliptic \(-\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-a^{2}+2 b \right )}{\sum }\frac {\ln \left (\frac {-\textit {\_R} x +\left (a \,x^{4}+b \right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R}^{5}}\right )}{8}\) \(42\)

input
int(x^4/(a*x^4+b)^(1/4)/(2*x^8+2*a*x^4+b),x,method=_RETURNVERBOSE)
 
output
-1/8*sum(ln((-_R*x+(a*x^4+b)^(1/4))/x)/_R^5,_R=RootOf(_Z^8-a^2+2*b))
 
3.31.46.5 Fricas [F(-1)]

Timed out. \[ \int \frac {x^4}{\sqrt [4]{b+a x^4} \left (b+2 a x^4+2 x^8\right )} \, dx=\text {Timed out} \]

input
integrate(x^4/(a*x^4+b)^(1/4)/(2*x^8+2*a*x^4+b),x, algorithm="fricas")
 
output
Timed out
 
3.31.46.6 Sympy [F]

\[ \int \frac {x^4}{\sqrt [4]{b+a x^4} \left (b+2 a x^4+2 x^8\right )} \, dx=\int \frac {x^{4}}{\sqrt [4]{a x^{4} + b} \left (2 a x^{4} + b + 2 x^{8}\right )}\, dx \]

input
integrate(x**4/(a*x**4+b)**(1/4)/(2*x**8+2*a*x**4+b),x)
 
output
Integral(x**4/((a*x**4 + b)**(1/4)*(2*a*x**4 + b + 2*x**8)), x)
 
3.31.46.7 Maxima [F]

\[ \int \frac {x^4}{\sqrt [4]{b+a x^4} \left (b+2 a x^4+2 x^8\right )} \, dx=\int { \frac {x^{4}}{{\left (2 \, x^{8} + 2 \, a x^{4} + b\right )} {\left (a x^{4} + b\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate(x^4/(a*x^4+b)^(1/4)/(2*x^8+2*a*x^4+b),x, algorithm="maxima")
 
output
integrate(x^4/((2*x^8 + 2*a*x^4 + b)*(a*x^4 + b)^(1/4)), x)
 
3.31.46.8 Giac [F]

\[ \int \frac {x^4}{\sqrt [4]{b+a x^4} \left (b+2 a x^4+2 x^8\right )} \, dx=\int { \frac {x^{4}}{{\left (2 \, x^{8} + 2 \, a x^{4} + b\right )} {\left (a x^{4} + b\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate(x^4/(a*x^4+b)^(1/4)/(2*x^8+2*a*x^4+b),x, algorithm="giac")
 
output
integrate(x^4/((2*x^8 + 2*a*x^4 + b)*(a*x^4 + b)^(1/4)), x)
 
3.31.46.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^4}{\sqrt [4]{b+a x^4} \left (b+2 a x^4+2 x^8\right )} \, dx=\int \frac {x^4}{{\left (a\,x^4+b\right )}^{1/4}\,\left (2\,x^8+2\,a\,x^4+b\right )} \,d x \]

input
int(x^4/((b + a*x^4)^(1/4)*(b + 2*a*x^4 + 2*x^8)),x)
 
output
int(x^4/((b + a*x^4)^(1/4)*(b + 2*a*x^4 + 2*x^8)), x)