3.31.49 \(\int \frac {(b+a x^4)^{3/4}}{b+2 a x^4+2 x^8} \, dx\) [3049]

3.31.49.1 Optimal result
3.31.49.2 Mathematica [F]
3.31.49.3 Rubi [A] (verified)
3.31.49.4 Maple [C] (verified)
3.31.49.5 Fricas [F(-1)]
3.31.49.6 Sympy [F]
3.31.49.7 Maxima [F]
3.31.49.8 Giac [F]
3.31.49.9 Mupad [F(-1)]

3.31.49.1 Optimal result

Integrand size = 27, antiderivative size = 460 \[ \int \frac {\left (b+a x^4\right )^{3/4}}{b+2 a x^4+2 x^8} \, dx=\frac {\left (-1-\sqrt [4]{-1}\right ) \arctan \left (\frac {(-1)^{7/8} \sqrt {2+\sqrt {2}} \sqrt [8]{a^2-2 b} x \sqrt [4]{b+a x^4}}{(-1)^{3/4} \sqrt [4]{a^2-2 b} x^2+\sqrt {b+a x^4}}\right )}{8 \sqrt [8]{a^2-2 b}}+\frac {\left (\sqrt {2}+i \sqrt {2 \left (3-2 \sqrt {2}\right )}\right ) \arctan \left (\frac {(-1)^{7/8} \left (-2+\sqrt {2}\right ) \sqrt [8]{a^2-2 b} x \sqrt [4]{b+a x^4}}{(-1)^{3/4} \sqrt {2-\sqrt {2}} \sqrt [4]{a^2-2 b} x^2+\sqrt {2-\sqrt {2}} \sqrt {b+a x^4}}\right )}{16 \sqrt [8]{a^2-2 b}}-\frac {i \left (-i \sqrt {2}+\sqrt {2 \left (3-2 \sqrt {2}\right )}\right ) \text {arctanh}\left (\frac {(-1)^{7/8} \sqrt [4]{a^2-2 b} x^2-\sqrt [8]{-1} \sqrt {b+a x^4}}{\sqrt {2-\sqrt {2}} \sqrt [8]{a^2-2 b} x \sqrt [4]{b+a x^4}}\right )}{16 \sqrt [8]{a^2-2 b}}+\frac {\left (-1-\sqrt [4]{-1}\right ) \text {arctanh}\left (\frac {(-1)^{7/8} \sqrt [4]{a^2-2 b} x^2-\sqrt [8]{-1} \sqrt {b+a x^4}}{\sqrt {2+\sqrt {2}} \sqrt [8]{a^2-2 b} x \sqrt [4]{b+a x^4}}\right )}{8 \sqrt [8]{a^2-2 b}} \]

output
1/8*(-1-(-1)^(1/4))*arctan((-1)^(7/8)*(2+2^(1/2))^(1/2)*(a^2-2*b)^(1/8)*x* 
(a*x^4+b)^(1/4)/((-1)^(3/4)*(a^2-2*b)^(1/4)*x^2+(a*x^4+b)^(1/2)))/(a^2-2*b 
)^(1/8)+1/16*(2^(1/2)+I*(2-2^(1/2)))*arctan((-1)^(7/8)*(-2+2^(1/2))*(a^2-2 
*b)^(1/8)*x*(a*x^4+b)^(1/4)/((-1)^(3/4)*(2-2^(1/2))^(1/2)*(a^2-2*b)^(1/4)* 
x^2+(2-2^(1/2))^(1/2)*(a*x^4+b)^(1/2)))/(a^2-2*b)^(1/8)-1/16*I*(-I*2^(1/2) 
+2-2^(1/2))*arctanh(((-1)^(7/8)*(a^2-2*b)^(1/4)*x^2-(-1)^(1/8)*(a*x^4+b)^( 
1/2))/(2-2^(1/2))^(1/2)/(a^2-2*b)^(1/8)/x/(a*x^4+b)^(1/4))/(a^2-2*b)^(1/8) 
+1/8*(-1-(-1)^(1/4))*arctanh(((-1)^(7/8)*(a^2-2*b)^(1/4)*x^2-(-1)^(1/8)*(a 
*x^4+b)^(1/2))/(2+2^(1/2))^(1/2)/(a^2-2*b)^(1/8)/x/(a*x^4+b)^(1/4))/(a^2-2 
*b)^(1/8)
 
3.31.49.2 Mathematica [F]

\[ \int \frac {\left (b+a x^4\right )^{3/4}}{b+2 a x^4+2 x^8} \, dx=\int \frac {\left (b+a x^4\right )^{3/4}}{b+2 a x^4+2 x^8} \, dx \]

input
Integrate[(b + a*x^4)^(3/4)/(b + 2*a*x^4 + 2*x^8),x]
 
output
Integrate[(b + a*x^4)^(3/4)/(b + 2*a*x^4 + 2*x^8), x]
 
3.31.49.3 Rubi [A] (verified)

Time = 0.83 (sec) , antiderivative size = 614, normalized size of antiderivative = 1.33, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.407, Rules used = {1758, 27, 916, 770, 756, 216, 219, 902, 756, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a x^4+b\right )^{3/4}}{2 a x^4+b+2 x^8} \, dx\)

\(\Big \downarrow \) 1758

\(\displaystyle \frac {2 \int \frac {\left (a x^4+b\right )^{3/4}}{2 \left (2 x^4+a-\sqrt {a^2-2 b}\right )}dx}{\sqrt {a^2-2 b}}-\frac {2 \int \frac {\left (a x^4+b\right )^{3/4}}{2 \left (2 x^4+a+\sqrt {a^2-2 b}\right )}dx}{\sqrt {a^2-2 b}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\left (a x^4+b\right )^{3/4}}{2 x^4+a-\sqrt {a^2-2 b}}dx}{\sqrt {a^2-2 b}}-\frac {\int \frac {\left (a x^4+b\right )^{3/4}}{2 x^4+a+\sqrt {a^2-2 b}}dx}{\sqrt {a^2-2 b}}\)

\(\Big \downarrow \) 916

\(\displaystyle \frac {\frac {1}{2} a \int \frac {1}{\sqrt [4]{a x^4+b}}dx-\frac {1}{2} \left (-a \sqrt {a^2-2 b}+a^2-2 b\right ) \int \frac {1}{\left (2 x^4+a-\sqrt {a^2-2 b}\right ) \sqrt [4]{a x^4+b}}dx}{\sqrt {a^2-2 b}}-\frac {\frac {1}{2} a \int \frac {1}{\sqrt [4]{a x^4+b}}dx-\frac {1}{2} \left (a \left (\sqrt {a^2-2 b}+a\right )-2 b\right ) \int \frac {1}{\left (2 x^4+a+\sqrt {a^2-2 b}\right ) \sqrt [4]{a x^4+b}}dx}{\sqrt {a^2-2 b}}\)

\(\Big \downarrow \) 770

\(\displaystyle \frac {\frac {1}{2} a \int \frac {1}{1-\frac {a x^4}{a x^4+b}}d\frac {x}{\sqrt [4]{a x^4+b}}-\frac {1}{2} \left (-a \sqrt {a^2-2 b}+a^2-2 b\right ) \int \frac {1}{\left (2 x^4+a-\sqrt {a^2-2 b}\right ) \sqrt [4]{a x^4+b}}dx}{\sqrt {a^2-2 b}}-\frac {\frac {1}{2} a \int \frac {1}{1-\frac {a x^4}{a x^4+b}}d\frac {x}{\sqrt [4]{a x^4+b}}-\frac {1}{2} \left (a \left (\sqrt {a^2-2 b}+a\right )-2 b\right ) \int \frac {1}{\left (2 x^4+a+\sqrt {a^2-2 b}\right ) \sqrt [4]{a x^4+b}}dx}{\sqrt {a^2-2 b}}\)

\(\Big \downarrow \) 756

\(\displaystyle \frac {\frac {1}{2} a \left (\frac {1}{2} \int \frac {1}{1-\frac {\sqrt {a} x^2}{\sqrt {a x^4+b}}}d\frac {x}{\sqrt [4]{a x^4+b}}+\frac {1}{2} \int \frac {1}{\frac {\sqrt {a} x^2}{\sqrt {a x^4+b}}+1}d\frac {x}{\sqrt [4]{a x^4+b}}\right )-\frac {1}{2} \left (-a \sqrt {a^2-2 b}+a^2-2 b\right ) \int \frac {1}{\left (2 x^4+a-\sqrt {a^2-2 b}\right ) \sqrt [4]{a x^4+b}}dx}{\sqrt {a^2-2 b}}-\frac {\frac {1}{2} a \left (\frac {1}{2} \int \frac {1}{1-\frac {\sqrt {a} x^2}{\sqrt {a x^4+b}}}d\frac {x}{\sqrt [4]{a x^4+b}}+\frac {1}{2} \int \frac {1}{\frac {\sqrt {a} x^2}{\sqrt {a x^4+b}}+1}d\frac {x}{\sqrt [4]{a x^4+b}}\right )-\frac {1}{2} \left (a \left (\sqrt {a^2-2 b}+a\right )-2 b\right ) \int \frac {1}{\left (2 x^4+a+\sqrt {a^2-2 b}\right ) \sqrt [4]{a x^4+b}}dx}{\sqrt {a^2-2 b}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {1}{2} a \left (\frac {1}{2} \int \frac {1}{1-\frac {\sqrt {a} x^2}{\sqrt {a x^4+b}}}d\frac {x}{\sqrt [4]{a x^4+b}}+\frac {\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}\right )-\frac {1}{2} \left (-a \sqrt {a^2-2 b}+a^2-2 b\right ) \int \frac {1}{\left (2 x^4+a-\sqrt {a^2-2 b}\right ) \sqrt [4]{a x^4+b}}dx}{\sqrt {a^2-2 b}}-\frac {\frac {1}{2} a \left (\frac {1}{2} \int \frac {1}{1-\frac {\sqrt {a} x^2}{\sqrt {a x^4+b}}}d\frac {x}{\sqrt [4]{a x^4+b}}+\frac {\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}\right )-\frac {1}{2} \left (a \left (\sqrt {a^2-2 b}+a\right )-2 b\right ) \int \frac {1}{\left (2 x^4+a+\sqrt {a^2-2 b}\right ) \sqrt [4]{a x^4+b}}dx}{\sqrt {a^2-2 b}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {1}{2} a \left (\frac {\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}\right )-\frac {1}{2} \left (-a \sqrt {a^2-2 b}+a^2-2 b\right ) \int \frac {1}{\left (2 x^4+a-\sqrt {a^2-2 b}\right ) \sqrt [4]{a x^4+b}}dx}{\sqrt {a^2-2 b}}-\frac {\frac {1}{2} a \left (\frac {\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}\right )-\frac {1}{2} \left (a \left (\sqrt {a^2-2 b}+a\right )-2 b\right ) \int \frac {1}{\left (2 x^4+a+\sqrt {a^2-2 b}\right ) \sqrt [4]{a x^4+b}}dx}{\sqrt {a^2-2 b}}\)

\(\Big \downarrow \) 902

\(\displaystyle \frac {\frac {1}{2} a \left (\frac {\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}\right )-\frac {1}{2} \left (-a \sqrt {a^2-2 b}+a^2-2 b\right ) \int \frac {1}{-\frac {\left (a \left (a-\sqrt {a^2-2 b}\right )-2 b\right ) x^4}{a x^4+b}+a-\sqrt {a^2-2 b}}d\frac {x}{\sqrt [4]{a x^4+b}}}{\sqrt {a^2-2 b}}-\frac {\frac {1}{2} a \left (\frac {\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}\right )-\frac {1}{2} \left (a \left (\sqrt {a^2-2 b}+a\right )-2 b\right ) \int \frac {1}{-\frac {\left (a \left (a+\sqrt {a^2-2 b}\right )-2 b\right ) x^4}{a x^4+b}+a+\sqrt {a^2-2 b}}d\frac {x}{\sqrt [4]{a x^4+b}}}{\sqrt {a^2-2 b}}\)

\(\Big \downarrow \) 756

\(\displaystyle \frac {\frac {1}{2} a \left (\frac {\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}\right )-\frac {1}{2} \left (-a \sqrt {a^2-2 b}+a^2-2 b\right ) \left (\frac {\int \frac {1}{\sqrt {a-\sqrt {a^2-2 b}}-\frac {\sqrt {a^2-\sqrt {a^2-2 b} a-2 b} x^2}{\sqrt {a x^4+b}}}d\frac {x}{\sqrt [4]{a x^4+b}}}{2 \sqrt {a-\sqrt {a^2-2 b}}}+\frac {\int \frac {1}{\frac {\sqrt {a^2-\sqrt {a^2-2 b} a-2 b} x^2}{\sqrt {a x^4+b}}+\sqrt {a-\sqrt {a^2-2 b}}}d\frac {x}{\sqrt [4]{a x^4+b}}}{2 \sqrt {a-\sqrt {a^2-2 b}}}\right )}{\sqrt {a^2-2 b}}-\frac {\frac {1}{2} a \left (\frac {\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}\right )-\frac {1}{2} \left (a \left (\sqrt {a^2-2 b}+a\right )-2 b\right ) \left (\frac {\int \frac {1}{\sqrt {a+\sqrt {a^2-2 b}}-\frac {\sqrt {a^2+\sqrt {a^2-2 b} a-2 b} x^2}{\sqrt {a x^4+b}}}d\frac {x}{\sqrt [4]{a x^4+b}}}{2 \sqrt {\sqrt {a^2-2 b}+a}}+\frac {\int \frac {1}{\frac {\sqrt {a^2+\sqrt {a^2-2 b} a-2 b} x^2}{\sqrt {a x^4+b}}+\sqrt {a+\sqrt {a^2-2 b}}}d\frac {x}{\sqrt [4]{a x^4+b}}}{2 \sqrt {\sqrt {a^2-2 b}+a}}\right )}{\sqrt {a^2-2 b}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {1}{2} a \left (\frac {\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}\right )-\frac {1}{2} \left (-a \sqrt {a^2-2 b}+a^2-2 b\right ) \left (\frac {\int \frac {1}{\sqrt {a-\sqrt {a^2-2 b}}-\frac {\sqrt {a^2-\sqrt {a^2-2 b} a-2 b} x^2}{\sqrt {a x^4+b}}}d\frac {x}{\sqrt [4]{a x^4+b}}}{2 \sqrt {a-\sqrt {a^2-2 b}}}+\frac {\arctan \left (\frac {x \sqrt [4]{-a \sqrt {a^2-2 b}+a^2-2 b}}{\sqrt [4]{a-\sqrt {a^2-2 b}} \sqrt [4]{a x^4+b}}\right )}{2 \left (a-\sqrt {a^2-2 b}\right )^{3/4} \sqrt [4]{-a \sqrt {a^2-2 b}+a^2-2 b}}\right )}{\sqrt {a^2-2 b}}-\frac {\frac {1}{2} a \left (\frac {\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}\right )-\frac {1}{2} \left (a \left (\sqrt {a^2-2 b}+a\right )-2 b\right ) \left (\frac {\int \frac {1}{\sqrt {a+\sqrt {a^2-2 b}}-\frac {\sqrt {a^2+\sqrt {a^2-2 b} a-2 b} x^2}{\sqrt {a x^4+b}}}d\frac {x}{\sqrt [4]{a x^4+b}}}{2 \sqrt {\sqrt {a^2-2 b}+a}}+\frac {\arctan \left (\frac {x \sqrt [4]{a \sqrt {a^2-2 b}+a^2-2 b}}{\sqrt [4]{\sqrt {a^2-2 b}+a} \sqrt [4]{a x^4+b}}\right )}{2 \left (\sqrt {a^2-2 b}+a\right )^{3/4} \sqrt [4]{a \sqrt {a^2-2 b}+a^2-2 b}}\right )}{\sqrt {a^2-2 b}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {1}{2} a \left (\frac {\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}\right )-\frac {1}{2} \left (-a \sqrt {a^2-2 b}+a^2-2 b\right ) \left (\frac {\arctan \left (\frac {x \sqrt [4]{-a \sqrt {a^2-2 b}+a^2-2 b}}{\sqrt [4]{a-\sqrt {a^2-2 b}} \sqrt [4]{a x^4+b}}\right )}{2 \left (a-\sqrt {a^2-2 b}\right )^{3/4} \sqrt [4]{-a \sqrt {a^2-2 b}+a^2-2 b}}+\frac {\text {arctanh}\left (\frac {x \sqrt [4]{-a \sqrt {a^2-2 b}+a^2-2 b}}{\sqrt [4]{a-\sqrt {a^2-2 b}} \sqrt [4]{a x^4+b}}\right )}{2 \left (a-\sqrt {a^2-2 b}\right )^{3/4} \sqrt [4]{-a \sqrt {a^2-2 b}+a^2-2 b}}\right )}{\sqrt {a^2-2 b}}-\frac {\frac {1}{2} a \left (\frac {\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{2 \sqrt [4]{a}}\right )-\frac {1}{2} \left (a \left (\sqrt {a^2-2 b}+a\right )-2 b\right ) \left (\frac {\arctan \left (\frac {x \sqrt [4]{a \sqrt {a^2-2 b}+a^2-2 b}}{\sqrt [4]{\sqrt {a^2-2 b}+a} \sqrt [4]{a x^4+b}}\right )}{2 \left (\sqrt {a^2-2 b}+a\right )^{3/4} \sqrt [4]{a \sqrt {a^2-2 b}+a^2-2 b}}+\frac {\text {arctanh}\left (\frac {x \sqrt [4]{a \sqrt {a^2-2 b}+a^2-2 b}}{\sqrt [4]{\sqrt {a^2-2 b}+a} \sqrt [4]{a x^4+b}}\right )}{2 \left (\sqrt {a^2-2 b}+a\right )^{3/4} \sqrt [4]{a \sqrt {a^2-2 b}+a^2-2 b}}\right )}{\sqrt {a^2-2 b}}\)

input
Int[(b + a*x^4)^(3/4)/(b + 2*a*x^4 + 2*x^8),x]
 
output
((a*(ArcTan[(a^(1/4)*x)/(b + a*x^4)^(1/4)]/(2*a^(1/4)) + ArcTanh[(a^(1/4)* 
x)/(b + a*x^4)^(1/4)]/(2*a^(1/4))))/2 - ((a^2 - a*Sqrt[a^2 - 2*b] - 2*b)*( 
ArcTan[((a^2 - a*Sqrt[a^2 - 2*b] - 2*b)^(1/4)*x)/((a - Sqrt[a^2 - 2*b])^(1 
/4)*(b + a*x^4)^(1/4))]/(2*(a - Sqrt[a^2 - 2*b])^(3/4)*(a^2 - a*Sqrt[a^2 - 
 2*b] - 2*b)^(1/4)) + ArcTanh[((a^2 - a*Sqrt[a^2 - 2*b] - 2*b)^(1/4)*x)/(( 
a - Sqrt[a^2 - 2*b])^(1/4)*(b + a*x^4)^(1/4))]/(2*(a - Sqrt[a^2 - 2*b])^(3 
/4)*(a^2 - a*Sqrt[a^2 - 2*b] - 2*b)^(1/4))))/2)/Sqrt[a^2 - 2*b] - ((a*(Arc 
Tan[(a^(1/4)*x)/(b + a*x^4)^(1/4)]/(2*a^(1/4)) + ArcTanh[(a^(1/4)*x)/(b + 
a*x^4)^(1/4)]/(2*a^(1/4))))/2 - ((a*(a + Sqrt[a^2 - 2*b]) - 2*b)*(ArcTan[( 
(a^2 + a*Sqrt[a^2 - 2*b] - 2*b)^(1/4)*x)/((a + Sqrt[a^2 - 2*b])^(1/4)*(b + 
 a*x^4)^(1/4))]/(2*(a + Sqrt[a^2 - 2*b])^(3/4)*(a^2 + a*Sqrt[a^2 - 2*b] - 
2*b)^(1/4)) + ArcTanh[((a^2 + a*Sqrt[a^2 - 2*b] - 2*b)^(1/4)*x)/((a + Sqrt 
[a^2 - 2*b])^(1/4)*(b + a*x^4)^(1/4))]/(2*(a + Sqrt[a^2 - 2*b])^(3/4)*(a^2 
 + a*Sqrt[a^2 - 2*b] - 2*b)^(1/4))))/2)/Sqrt[a^2 - 2*b]
 

3.31.49.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 770
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^(p + 1/n)   Subst[In 
t[1/(1 - b*x^n)^(p + 1/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, 
 b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p + 1 
/n]
 

rule 902
Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Su 
bst[Int[1/(c - (b*c - a*d)*x^n), x], x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b 
, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]
 

rule 916
Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Si 
mp[b/d   Int[(a + b*x^n)^(p - 1), x], x] - Simp[(b*c - a*d)/d   Int[(a + b* 
x^n)^(p - 1)/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b*c - 
a*d, 0] && EqQ[n*(p - 1) + 1, 0] && IntegerQ[n]
 

rule 1758
Int[((d_) + (e_.)*(x_)^(n_))^(q_)/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_ 
)), x_Symbol] :> With[{r = Rt[b^2 - 4*a*c, 2]}, Simp[2*(c/r)   Int[(d + e*x 
^n)^q/(b - r + 2*c*x^n), x], x] - Simp[2*(c/r)   Int[(d + e*x^n)^q/(b + r + 
 2*c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n, q}, x] && EqQ[n2, 2*n] && Ne 
Q[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[q]
 
3.31.49.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.27 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.09

method result size
pseudoelliptic \(-\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-a^{2}+2 b \right )}{\sum }\frac {\ln \left (\frac {-\textit {\_R} x +\left (a \,x^{4}+b \right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R}}\right )}{8}\) \(42\)

input
int((a*x^4+b)^(3/4)/(2*x^8+2*a*x^4+b),x,method=_RETURNVERBOSE)
 
output
-1/8*sum(ln((-_R*x+(a*x^4+b)^(1/4))/x)/_R,_R=RootOf(_Z^8-a^2+2*b))
 
3.31.49.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\left (b+a x^4\right )^{3/4}}{b+2 a x^4+2 x^8} \, dx=\text {Timed out} \]

input
integrate((a*x^4+b)^(3/4)/(2*x^8+2*a*x^4+b),x, algorithm="fricas")
 
output
Timed out
 
3.31.49.6 Sympy [F]

\[ \int \frac {\left (b+a x^4\right )^{3/4}}{b+2 a x^4+2 x^8} \, dx=\int \frac {\left (a x^{4} + b\right )^{\frac {3}{4}}}{2 a x^{4} + b + 2 x^{8}}\, dx \]

input
integrate((a*x**4+b)**(3/4)/(2*x**8+2*a*x**4+b),x)
 
output
Integral((a*x**4 + b)**(3/4)/(2*a*x**4 + b + 2*x**8), x)
 
3.31.49.7 Maxima [F]

\[ \int \frac {\left (b+a x^4\right )^{3/4}}{b+2 a x^4+2 x^8} \, dx=\int { \frac {{\left (a x^{4} + b\right )}^{\frac {3}{4}}}{2 \, x^{8} + 2 \, a x^{4} + b} \,d x } \]

input
integrate((a*x^4+b)^(3/4)/(2*x^8+2*a*x^4+b),x, algorithm="maxima")
 
output
integrate((a*x^4 + b)^(3/4)/(2*x^8 + 2*a*x^4 + b), x)
 
3.31.49.8 Giac [F]

\[ \int \frac {\left (b+a x^4\right )^{3/4}}{b+2 a x^4+2 x^8} \, dx=\int { \frac {{\left (a x^{4} + b\right )}^{\frac {3}{4}}}{2 \, x^{8} + 2 \, a x^{4} + b} \,d x } \]

input
integrate((a*x^4+b)^(3/4)/(2*x^8+2*a*x^4+b),x, algorithm="giac")
 
output
integrate((a*x^4 + b)^(3/4)/(2*x^8 + 2*a*x^4 + b), x)
 
3.31.49.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (b+a x^4\right )^{3/4}}{b+2 a x^4+2 x^8} \, dx=\int \frac {{\left (a\,x^4+b\right )}^{3/4}}{2\,x^8+2\,a\,x^4+b} \,d x \]

input
int((b + a*x^4)^(3/4)/(b + 2*a*x^4 + 2*x^8),x)
 
output
int((b + a*x^4)^(3/4)/(b + 2*a*x^4 + 2*x^8), x)