3.3.66 \(\int \frac {-1+2 x}{\sqrt {4+x^2-2 x^3+x^4}} \, dx\) [266]

3.3.66.1 Optimal result
3.3.66.2 Mathematica [A] (verified)
3.3.66.3 Rubi [A] (verified)
3.3.66.4 Maple [A] (verified)
3.3.66.5 Fricas [A] (verification not implemented)
3.3.66.6 Sympy [F]
3.3.66.7 Maxima [F]
3.3.66.8 Giac [A] (verification not implemented)
3.3.66.9 Mupad [F(-1)]

3.3.66.1 Optimal result

Integrand size = 23, antiderivative size = 25 \[ \int \frac {-1+2 x}{\sqrt {4+x^2-2 x^3+x^4}} \, dx=\log \left (-x+x^2+\sqrt {4+x^2-2 x^3+x^4}\right ) \]

output
ln(-x+x^2+(x^4-2*x^3+x^2+4)^(1/2))
 
3.3.66.2 Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.00 \[ \int \frac {-1+2 x}{\sqrt {4+x^2-2 x^3+x^4}} \, dx=\log \left (-x+x^2+\sqrt {4+x^2-2 x^3+x^4}\right ) \]

input
Integrate[(-1 + 2*x)/Sqrt[4 + x^2 - 2*x^3 + x^4],x]
 
output
Log[-x + x^2 + Sqrt[4 + x^2 - 2*x^3 + x^4]]
 
3.3.66.3 Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.64, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {2459, 27, 27, 1432, 1090, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {2 x-1}{\sqrt {x^4-2 x^3+x^2+4}} \, dx\)

\(\Big \downarrow \) 2459

\(\displaystyle \int \frac {2 \left (x-\frac {1}{2}\right )}{\sqrt {\left (x-\frac {1}{2}\right )^4-\frac {1}{2} \left (x-\frac {1}{2}\right )^2+\frac {65}{16}}}d\left (x-\frac {1}{2}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \int \frac {4 \left (x-\frac {1}{2}\right )}{\sqrt {16 \left (x-\frac {1}{2}\right )^4-8 \left (x-\frac {1}{2}\right )^2+65}}d\left (x-\frac {1}{2}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 8 \int \frac {x-\frac {1}{2}}{\sqrt {16 \left (x-\frac {1}{2}\right )^4-8 \left (x-\frac {1}{2}\right )^2+65}}d\left (x-\frac {1}{2}\right )\)

\(\Big \downarrow \) 1432

\(\displaystyle 4 \int \frac {1}{\sqrt {16 \left (x-\frac {1}{2}\right )^4-8 \left (x-\frac {1}{2}\right )^2+65}}d\left (x-\frac {1}{2}\right )^2\)

\(\Big \downarrow \) 1090

\(\displaystyle \frac {1}{64} \int \frac {1}{\sqrt {\frac {\left (x-\frac {1}{2}\right )^4}{4096}+1}}d\left (32 \left (x-\frac {1}{2}\right )^2-8\right )\)

\(\Big \downarrow \) 222

\(\displaystyle \text {arcsinh}\left (\frac {1}{64} \left (32 \left (x-\frac {1}{2}\right )^2-8\right )\right )\)

input
Int[(-1 + 2*x)/Sqrt[4 + x^2 - 2*x^3 + x^4],x]
 
output
ArcSinh[(-8 + 32*(-1/2 + x)^2)/64]
 

3.3.66.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 1090
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/(2*c*(-4* 
(c/(b^2 - 4*a*c)))^p)   Subst[Int[Simp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, 
b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]
 

rule 1432
Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[1/2 
 Subst[Int[(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x]
 

rule 2459
Int[(Pn_)^(p_.)*(Qx_), x_Symbol] :> With[{S = Coeff[Pn, x, Expon[Pn, x] - 1 
]/(Expon[Pn, x]*Coeff[Pn, x, Expon[Pn, x]])}, Subst[Int[ExpandToSum[Pn /. x 
 -> x - S, x]^p*ExpandToSum[Qx /. x -> x - S, x], x], x, x + S] /; Binomial 
Q[Pn /. x -> x - S, x] || (IntegerQ[Expon[Pn, x]/2] && TrinomialQ[Pn /. x - 
> x - S, x])] /; FreeQ[p, x] && PolyQ[Pn, x] && GtQ[Expon[Pn, x], 2] && NeQ 
[Coeff[Pn, x, Expon[Pn, x] - 1], 0] && PolyQ[Qx, x] &&  !(MonomialQ[Qx, x] 
&& IGtQ[p, 0])
 
3.3.66.4 Maple [A] (verified)

Time = 1.43 (sec) , antiderivative size = 8, normalized size of antiderivative = 0.32

method result size
default \(\operatorname {arcsinh}\left (\frac {x \left (x -1\right )}{2}\right )\) \(8\)
pseudoelliptic \(\operatorname {arcsinh}\left (\frac {x \left (x -1\right )}{2}\right )\) \(8\)
trager \(\ln \left (-x +x^{2}+\sqrt {x^{4}-2 x^{3}+x^{2}+4}\right )\) \(24\)
elliptic \(\text {Expression too large to display}\) \(888\)

input
int((-1+2*x)/(x^4-2*x^3+x^2+4)^(1/2),x,method=_RETURNVERBOSE)
 
output
arcsinh(1/2*x*(x-1))
 
3.3.66.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.92 \[ \int \frac {-1+2 x}{\sqrt {4+x^2-2 x^3+x^4}} \, dx=\log \left (x^{2} - x + \sqrt {x^{4} - 2 \, x^{3} + x^{2} + 4}\right ) \]

input
integrate((-1+2*x)/(x^4-2*x^3+x^2+4)^(1/2),x, algorithm="fricas")
 
output
log(x^2 - x + sqrt(x^4 - 2*x^3 + x^2 + 4))
 
3.3.66.6 Sympy [F]

\[ \int \frac {-1+2 x}{\sqrt {4+x^2-2 x^3+x^4}} \, dx=\int \frac {2 x - 1}{\sqrt {x^{4} - 2 x^{3} + x^{2} + 4}}\, dx \]

input
integrate((-1+2*x)/(x**4-2*x**3+x**2+4)**(1/2),x)
 
output
Integral((2*x - 1)/sqrt(x**4 - 2*x**3 + x**2 + 4), x)
 
3.3.66.7 Maxima [F]

\[ \int \frac {-1+2 x}{\sqrt {4+x^2-2 x^3+x^4}} \, dx=\int { \frac {2 \, x - 1}{\sqrt {x^{4} - 2 \, x^{3} + x^{2} + 4}} \,d x } \]

input
integrate((-1+2*x)/(x^4-2*x^3+x^2+4)^(1/2),x, algorithm="maxima")
 
output
integrate((2*x - 1)/sqrt(x^4 - 2*x^3 + x^2 + 4), x)
 
3.3.66.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 46, normalized size of antiderivative = 1.84 \[ \int \frac {-1+2 x}{\sqrt {4+x^2-2 x^3+x^4}} \, dx=\frac {1}{2} \, \sqrt {{\left (x^{2} - x\right )}^{2} + 4} {\left (x^{2} - x\right )} - 2 \, \log \left (-x^{2} + x + \sqrt {{\left (x^{2} - x\right )}^{2} + 4}\right ) \]

input
integrate((-1+2*x)/(x^4-2*x^3+x^2+4)^(1/2),x, algorithm="giac")
 
output
1/2*sqrt((x^2 - x)^2 + 4)*(x^2 - x) - 2*log(-x^2 + x + sqrt((x^2 - x)^2 + 
4))
 
3.3.66.9 Mupad [F(-1)]

Timed out. \[ \int \frac {-1+2 x}{\sqrt {4+x^2-2 x^3+x^4}} \, dx=\int \frac {2\,x-1}{\sqrt {x^4-2\,x^3+x^2+4}} \,d x \]

input
int((2*x - 1)/(x^2 - 2*x^3 + x^4 + 4)^(1/2),x)
 
output
int((2*x - 1)/(x^2 - 2*x^3 + x^4 + 4)^(1/2), x)