3.31.58 \(\int \frac {-1+x^8}{\sqrt [4]{-x^2+x^6} (1+x^8)} \, dx\) [3058]

3.31.58.1 Optimal result
3.31.58.2 Mathematica [A] (warning: unable to verify)
3.31.58.3 Rubi [C] (verified)
3.31.58.4 Maple [F(-1)]
3.31.58.5 Fricas [F(-1)]
3.31.58.6 Sympy [F]
3.31.58.7 Maxima [F]
3.31.58.8 Giac [F]
3.31.58.9 Mupad [F(-1)]

3.31.58.1 Optimal result

Integrand size = 26, antiderivative size = 469 \[ \int \frac {-1+x^8}{\sqrt [4]{-x^2+x^6} \left (1+x^8\right )} \, dx=-\frac {1}{4} \sqrt [4]{-4+3 \sqrt {2}} \arctan \left (\frac {\sqrt {2-\sqrt {2}} x}{-\sqrt {2+\sqrt {2}} x+2^{7/8} \sqrt [4]{-x^2+x^6}}\right )-\frac {1}{4} \sqrt [4]{-4+3 \sqrt {2}} \arctan \left (\frac {\sqrt {2-\sqrt {2}} x}{\sqrt {2+\sqrt {2}} x+2^{7/8} \sqrt [4]{-x^2+x^6}}\right )-\frac {1}{4} \sqrt [4]{4+3 \sqrt {2}} \arctan \left (\frac {2^{7/8} \sqrt {2+\sqrt {2}} x \sqrt [4]{-x^2+x^6}}{-2 x^2+2^{3/4} \sqrt {-x^2+x^6}}\right )-\frac {1}{4} \sqrt [4]{-4+3 \sqrt {2}} \text {arctanh}\left (\frac {\frac {\sqrt [8]{2} x^2}{\sqrt {2-\sqrt {2}}}+\frac {\sqrt {-x^2+x^6}}{\sqrt [8]{2} \sqrt {2-\sqrt {2}}}}{x \sqrt [4]{-x^2+x^6}}\right )+\frac {1}{8} \sqrt [4]{4+3 \sqrt {2}} \log \left (-2 x^2+2^{7/8} \sqrt {2+\sqrt {2}} x \sqrt [4]{-x^2+x^6}-2^{3/4} \sqrt {-x^2+x^6}\right )-\frac {1}{8} \sqrt [4]{4+3 \sqrt {2}} \log \left (2 \sqrt {2-\sqrt {2}} x^2+2\ 2^{3/8} x \sqrt [4]{-x^2+x^6}+2^{3/4} \sqrt {2-\sqrt {2}} \sqrt {-x^2+x^6}\right ) \]

output
-1/4*(-4+3*2^(1/2))^(1/4)*arctan((2-2^(1/2))^(1/2)*x/(-(2+2^(1/2))^(1/2)*x 
+2^(7/8)*(x^6-x^2)^(1/4)))-1/4*(-4+3*2^(1/2))^(1/4)*arctan((2-2^(1/2))^(1/ 
2)*x/((2+2^(1/2))^(1/2)*x+2^(7/8)*(x^6-x^2)^(1/4)))-1/4*(4+3*2^(1/2))^(1/4 
)*arctan(2^(7/8)*(2+2^(1/2))^(1/2)*x*(x^6-x^2)^(1/4)/(-2*x^2+2^(3/4)*(x^6- 
x^2)^(1/2)))-1/4*(-4+3*2^(1/2))^(1/4)*arctanh((2^(1/8)*x^2/(2-2^(1/2))^(1/ 
2)+1/2*(x^6-x^2)^(1/2)*2^(7/8)/(2-2^(1/2))^(1/2))/x/(x^6-x^2)^(1/4))+1/8*( 
4+3*2^(1/2))^(1/4)*ln(-2*x^2+2^(7/8)*(2+2^(1/2))^(1/2)*x*(x^6-x^2)^(1/4)-2 
^(3/4)*(x^6-x^2)^(1/2))-1/8*(4+3*2^(1/2))^(1/4)*ln(2*(2-2^(1/2))^(1/2)*x^2 
+2*2^(3/8)*x*(x^6-x^2)^(1/4)+2^(3/4)*(2-2^(1/2))^(1/2)*(x^6-x^2)^(1/2))
 
3.31.58.2 Mathematica [A] (warning: unable to verify)

Time = 25.29 (sec) , antiderivative size = 342, normalized size of antiderivative = 0.73 \[ \int \frac {-1+x^8}{\sqrt [4]{-x^2+x^6} \left (1+x^8\right )} \, dx=\frac {\sqrt [4]{-1+\frac {1}{x^4}} x^{3/2} \left (2 \sqrt [4]{-4+3 \sqrt {2}} \arctan \left (\frac {\sqrt [4]{-8+6 \sqrt {2}} \sqrt [4]{-1+\frac {1}{x^4}} \sqrt {x}}{\sqrt [4]{2}-\sqrt {-1+\frac {1}{x^4}} x}\right )-2 \sqrt [4]{-4+3 \sqrt {2}} \text {arctanh}\left (\frac {2 \sqrt [4]{-4+3 \sqrt {2}} \sqrt [4]{-1+\frac {1}{x^4}} \sqrt {x}}{2+2^{3/4} \sqrt {-1+\frac {1}{x^4}} x}\right )+\sqrt [4]{4+3 \sqrt {2}} \left (2 \arctan \left (\frac {\sqrt [4]{8+6 \sqrt {2}} \sqrt [4]{-1+\frac {1}{x^4}} \sqrt {x}}{\sqrt [4]{2}-\sqrt {-1+\frac {1}{x^4}} x}\right )+\log \left (\frac {2-2 \sqrt [4]{4+3 \sqrt {2}} \sqrt [4]{-1+\frac {1}{x^4}} \sqrt {x}+2^{3/4} \sqrt {-1+\frac {1}{x^4}} x}{x}\right )-\log \left (\frac {\sqrt {2-\sqrt {2}}+2^{3/8} \sqrt [4]{-1+\frac {1}{x^4}} \sqrt {x}+\sqrt {-1+\sqrt {2}} \sqrt {-1+\frac {1}{x^4}} x}{x}\right )\right )\right )}{8 \sqrt [4]{x^2 \left (-1+x^4\right )}} \]

input
Integrate[(-1 + x^8)/((-x^2 + x^6)^(1/4)*(1 + x^8)),x]
 
output
((-1 + x^(-4))^(1/4)*x^(3/2)*(2*(-4 + 3*Sqrt[2])^(1/4)*ArcTan[((-8 + 6*Sqr 
t[2])^(1/4)*(-1 + x^(-4))^(1/4)*Sqrt[x])/(2^(1/4) - Sqrt[-1 + x^(-4)]*x)] 
- 2*(-4 + 3*Sqrt[2])^(1/4)*ArcTanh[(2*(-4 + 3*Sqrt[2])^(1/4)*(-1 + x^(-4)) 
^(1/4)*Sqrt[x])/(2 + 2^(3/4)*Sqrt[-1 + x^(-4)]*x)] + (4 + 3*Sqrt[2])^(1/4) 
*(2*ArcTan[((8 + 6*Sqrt[2])^(1/4)*(-1 + x^(-4))^(1/4)*Sqrt[x])/(2^(1/4) - 
Sqrt[-1 + x^(-4)]*x)] + Log[(2 - 2*(4 + 3*Sqrt[2])^(1/4)*(-1 + x^(-4))^(1/ 
4)*Sqrt[x] + 2^(3/4)*Sqrt[-1 + x^(-4)]*x)/x] - Log[(Sqrt[2 - Sqrt[2]] + 2^ 
(3/8)*(-1 + x^(-4))^(1/4)*Sqrt[x] + Sqrt[-1 + Sqrt[2]]*Sqrt[-1 + x^(-4)]*x 
)/x])))/(8*(x^2*(-1 + x^4))^(1/4))
 
3.31.58.3 Rubi [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 0.52 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.29, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {2467, 25, 1388, 2035, 25, 7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^8-1}{\sqrt [4]{x^6-x^2} \left (x^8+1\right )} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt [4]{x^4-1} \int -\frac {1-x^8}{\sqrt {x} \sqrt [4]{x^4-1} \left (x^8+1\right )}dx}{\sqrt [4]{x^6-x^2}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt {x} \sqrt [4]{x^4-1} \int \frac {1-x^8}{\sqrt {x} \sqrt [4]{x^4-1} \left (x^8+1\right )}dx}{\sqrt [4]{x^6-x^2}}\)

\(\Big \downarrow \) 1388

\(\displaystyle -\frac {\sqrt {x} \sqrt [4]{x^4-1} \int \frac {\left (-x^4-1\right ) \left (x^4-1\right )^{3/4}}{\sqrt {x} \left (x^8+1\right )}dx}{\sqrt [4]{x^6-x^2}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {2 \sqrt {x} \sqrt [4]{x^4-1} \int -\frac {\left (x^4-1\right )^{3/4} \left (x^4+1\right )}{x^8+1}d\sqrt {x}}{\sqrt [4]{x^6-x^2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \sqrt {x} \sqrt [4]{x^4-1} \int \frac {\left (x^4-1\right )^{3/4} \left (x^4+1\right )}{x^8+1}d\sqrt {x}}{\sqrt [4]{x^6-x^2}}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {2 \sqrt {x} \sqrt [4]{x^4-1} \int \left (\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \left (x^4-1\right )^{3/4}}{x^4+i}-\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \left (x^4-1\right )^{3/4}}{i-x^4}\right )d\sqrt {x}}{\sqrt [4]{x^6-x^2}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 \sqrt {x} \sqrt [4]{x^4-1} \left (-\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \sqrt {x} \left (x^4-1\right )^{3/4} \operatorname {AppellF1}\left (\frac {1}{8},-\frac {3}{4},1,\frac {9}{8},x^4,i x^4\right )}{\left (1-x^4\right )^{3/4}}-\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {x} \left (x^4-1\right )^{3/4} \operatorname {AppellF1}\left (\frac {1}{8},1,-\frac {3}{4},\frac {9}{8},-i x^4,x^4\right )}{\left (1-x^4\right )^{3/4}}\right )}{\sqrt [4]{x^6-x^2}}\)

input
Int[(-1 + x^8)/((-x^2 + x^6)^(1/4)*(1 + x^8)),x]
 
output
(-2*Sqrt[x]*(-1 + x^4)^(1/4)*(((-1/2 + I/2)*Sqrt[x]*(-1 + x^4)^(3/4)*Appel 
lF1[1/8, -3/4, 1, 9/8, x^4, I*x^4])/(1 - x^4)^(3/4) - ((1/2 + I/2)*Sqrt[x] 
*(-1 + x^4)^(3/4)*AppellF1[1/8, 1, -3/4, 9/8, (-I)*x^4, x^4])/(1 - x^4)^(3 
/4)))/(-x^2 + x^6)^(1/4)
 

3.31.58.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 1388
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), 
x_Symbol] :> Int[u*(d + e*x^n)^(p + q)*(a/d + (c/e)*x^n)^p, x] /; FreeQ[{a, 
 c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 + a*e^2, 0] && (Integer 
Q[p] || (GtQ[a, 0] && GtQ[d, 0]))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.31.58.4 Maple [F(-1)]

Timed out.

\[\int \frac {x^{8}-1}{\left (x^{6}-x^{2}\right )^{\frac {1}{4}} \left (x^{8}+1\right )}d x\]

input
int((x^8-1)/(x^6-x^2)^(1/4)/(x^8+1),x)
 
output
int((x^8-1)/(x^6-x^2)^(1/4)/(x^8+1),x)
 
3.31.58.5 Fricas [F(-1)]

Timed out. \[ \int \frac {-1+x^8}{\sqrt [4]{-x^2+x^6} \left (1+x^8\right )} \, dx=\text {Timed out} \]

input
integrate((x^8-1)/(x^6-x^2)^(1/4)/(x^8+1),x, algorithm="fricas")
 
output
Timed out
 
3.31.58.6 Sympy [F]

\[ \int \frac {-1+x^8}{\sqrt [4]{-x^2+x^6} \left (1+x^8\right )} \, dx=\int \frac {\left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right ) \left (x^{4} + 1\right )}{\sqrt [4]{x^{2} \left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right )} \left (x^{8} + 1\right )}\, dx \]

input
integrate((x**8-1)/(x**6-x**2)**(1/4)/(x**8+1),x)
 
output
Integral((x - 1)*(x + 1)*(x**2 + 1)*(x**4 + 1)/((x**2*(x - 1)*(x + 1)*(x** 
2 + 1))**(1/4)*(x**8 + 1)), x)
 
3.31.58.7 Maxima [F]

\[ \int \frac {-1+x^8}{\sqrt [4]{-x^2+x^6} \left (1+x^8\right )} \, dx=\int { \frac {x^{8} - 1}{{\left (x^{8} + 1\right )} {\left (x^{6} - x^{2}\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate((x^8-1)/(x^6-x^2)^(1/4)/(x^8+1),x, algorithm="maxima")
 
output
integrate((x^8 - 1)/((x^8 + 1)*(x^6 - x^2)^(1/4)), x)
 
3.31.58.8 Giac [F]

\[ \int \frac {-1+x^8}{\sqrt [4]{-x^2+x^6} \left (1+x^8\right )} \, dx=\int { \frac {x^{8} - 1}{{\left (x^{8} + 1\right )} {\left (x^{6} - x^{2}\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate((x^8-1)/(x^6-x^2)^(1/4)/(x^8+1),x, algorithm="giac")
 
output
integrate((x^8 - 1)/((x^8 + 1)*(x^6 - x^2)^(1/4)), x)
 
3.31.58.9 Mupad [F(-1)]

Timed out. \[ \int \frac {-1+x^8}{\sqrt [4]{-x^2+x^6} \left (1+x^8\right )} \, dx=\int \frac {x^8-1}{\left (x^8+1\right )\,{\left (x^6-x^2\right )}^{1/4}} \,d x \]

input
int((x^8 - 1)/((x^8 + 1)*(x^6 - x^2)^(1/4)),x)
 
output
int((x^8 - 1)/((x^8 + 1)*(x^6 - x^2)^(1/4)), x)