3.31.68 \(\int \frac {b-a x^4+2 x^8}{\sqrt [4]{b+a x^4} (-b-2 a x^4+x^8)} \, dx\) [3068]

3.31.68.1 Optimal result
3.31.68.2 Mathematica [F]
3.31.68.3 Rubi [A] (verified)
3.31.68.4 Maple [C] (verified)
3.31.68.5 Fricas [A] (verification not implemented)
3.31.68.6 Sympy [F(-1)]
3.31.68.7 Maxima [F]
3.31.68.8 Giac [F]
3.31.68.9 Mupad [F(-1)]

3.31.68.1 Optimal result

Integrand size = 40, antiderivative size = 482 \[ \int \frac {b-a x^4+2 x^8}{\sqrt [4]{b+a x^4} \left (-b-2 a x^4+x^8\right )} \, dx=\frac {\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{\sqrt [4]{a}}+\frac {3 \left (1+\sqrt [4]{-1}\right ) \arctan \left (\frac {(-1)^{7/8} \sqrt {2+\sqrt {2}} \sqrt [8]{a^2+b} x \sqrt [4]{b+a x^4}}{(-1)^{3/4} \sqrt [4]{a^2+b} x^2+\sqrt {b+a x^4}}\right )}{8 \sqrt [8]{a^2+b}}-\frac {3 i \left (-i \sqrt {2}+\sqrt {2 \left (3-2 \sqrt {2}\right )}\right ) \arctan \left (\frac {(-1)^{7/8} \left (-2+\sqrt {2}\right ) \sqrt [8]{a^2+b} x \sqrt [4]{b+a x^4}}{(-1)^{3/4} \sqrt {2-\sqrt {2}} \sqrt [4]{a^2+b} x^2+\sqrt {2-\sqrt {2}} \sqrt {b+a x^4}}\right )}{16 \sqrt [8]{a^2+b}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{\sqrt [4]{a}}+\frac {3 \left (\sqrt {2}+i \sqrt {2 \left (3-2 \sqrt {2}\right )}\right ) \text {arctanh}\left (\frac {(-1)^{7/8} \sqrt [4]{a^2+b} x^2-\sqrt [8]{-1} \sqrt {b+a x^4}}{\sqrt {2-\sqrt {2}} \sqrt [8]{a^2+b} x \sqrt [4]{b+a x^4}}\right )}{16 \sqrt [8]{a^2+b}}+\frac {3 \left (1+\sqrt [4]{-1}\right ) \text {arctanh}\left (\frac {(-1)^{7/8} \sqrt [4]{a^2+b} x^2-\sqrt [8]{-1} \sqrt {b+a x^4}}{\sqrt {2+\sqrt {2}} \sqrt [8]{a^2+b} x \sqrt [4]{b+a x^4}}\right )}{8 \sqrt [8]{a^2+b}} \]

output
arctan(a^(1/4)*x/(a*x^4+b)^(1/4))/a^(1/4)+3/8*(1+(-1)^(1/4))*arctan((-1)^( 
7/8)*(2+2^(1/2))^(1/2)*(a^2+b)^(1/8)*x*(a*x^4+b)^(1/4)/((-1)^(3/4)*(a^2+b) 
^(1/4)*x^2+(a*x^4+b)^(1/2)))/(a^2+b)^(1/8)-3/16*I*(-I*2^(1/2)+2-2^(1/2))*a 
rctan((-1)^(7/8)*(-2+2^(1/2))*(a^2+b)^(1/8)*x*(a*x^4+b)^(1/4)/((-1)^(3/4)* 
(2-2^(1/2))^(1/2)*(a^2+b)^(1/4)*x^2+(2-2^(1/2))^(1/2)*(a*x^4+b)^(1/2)))/(a 
^2+b)^(1/8)+arctanh(a^(1/4)*x/(a*x^4+b)^(1/4))/a^(1/4)+3/16*(2^(1/2)+I*(2- 
2^(1/2)))*arctanh(((-1)^(7/8)*(a^2+b)^(1/4)*x^2-(-1)^(1/8)*(a*x^4+b)^(1/2) 
)/(2-2^(1/2))^(1/2)/(a^2+b)^(1/8)/x/(a*x^4+b)^(1/4))/(a^2+b)^(1/8)+3/8*(1+ 
(-1)^(1/4))*arctanh(((-1)^(7/8)*(a^2+b)^(1/4)*x^2-(-1)^(1/8)*(a*x^4+b)^(1/ 
2))/(2+2^(1/2))^(1/2)/(a^2+b)^(1/8)/x/(a*x^4+b)^(1/4))/(a^2+b)^(1/8)
 
3.31.68.2 Mathematica [F]

\[ \int \frac {b-a x^4+2 x^8}{\sqrt [4]{b+a x^4} \left (-b-2 a x^4+x^8\right )} \, dx=\int \frac {b-a x^4+2 x^8}{\sqrt [4]{b+a x^4} \left (-b-2 a x^4+x^8\right )} \, dx \]

input
Integrate[(b - a*x^4 + 2*x^8)/((b + a*x^4)^(1/4)*(-b - 2*a*x^4 + x^8)),x]
 
output
Integrate[(b - a*x^4 + 2*x^8)/((b + a*x^4)^(1/4)*(-b - 2*a*x^4 + x^8)), x]
 
3.31.68.3 Rubi [A] (verified)

Time = 1.27 (sec) , antiderivative size = 451, normalized size of antiderivative = 0.94, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {-a x^4+b+2 x^8}{\sqrt [4]{a x^4+b} \left (-2 a x^4-b+x^8\right )} \, dx\)

\(\Big \downarrow \) 7279

\(\displaystyle \int \left (\frac {2}{\sqrt [4]{a x^4+b}}+\frac {3 \left (a x^4+b\right )^{3/4}}{-2 a x^4-b+x^8}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {3 \left (-a \sqrt {a^2+b}+a^2+b\right )^{3/4} \arctan \left (\frac {x \sqrt [4]{-a \sqrt {a^2+b}+a^2+b}}{\sqrt [4]{a-\sqrt {a^2+b}} \sqrt [4]{a x^4+b}}\right )}{4 \sqrt {a^2+b} \left (a-\sqrt {a^2+b}\right )^{3/4}}-\frac {3 \left (a \sqrt {a^2+b}+a^2+b\right )^{3/4} \arctan \left (\frac {x \sqrt [4]{a \sqrt {a^2+b}+a^2+b}}{\sqrt [4]{\sqrt {a^2+b}+a} \sqrt [4]{a x^4+b}}\right )}{4 \sqrt {a^2+b} \left (\sqrt {a^2+b}+a\right )^{3/4}}+\frac {3 \left (-a \sqrt {a^2+b}+a^2+b\right )^{3/4} \text {arctanh}\left (\frac {x \sqrt [4]{-a \sqrt {a^2+b}+a^2+b}}{\sqrt [4]{a-\sqrt {a^2+b}} \sqrt [4]{a x^4+b}}\right )}{4 \sqrt {a^2+b} \left (a-\sqrt {a^2+b}\right )^{3/4}}-\frac {3 \left (a \sqrt {a^2+b}+a^2+b\right )^{3/4} \text {arctanh}\left (\frac {x \sqrt [4]{a \sqrt {a^2+b}+a^2+b}}{\sqrt [4]{\sqrt {a^2+b}+a} \sqrt [4]{a x^4+b}}\right )}{4 \sqrt {a^2+b} \left (\sqrt {a^2+b}+a\right )^{3/4}}+\frac {\arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{\sqrt [4]{a}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{\sqrt [4]{a}}\)

input
Int[(b - a*x^4 + 2*x^8)/((b + a*x^4)^(1/4)*(-b - 2*a*x^4 + x^8)),x]
 
output
ArcTan[(a^(1/4)*x)/(b + a*x^4)^(1/4)]/a^(1/4) + (3*(a^2 + b - a*Sqrt[a^2 + 
 b])^(3/4)*ArcTan[((a^2 + b - a*Sqrt[a^2 + b])^(1/4)*x)/((a - Sqrt[a^2 + b 
])^(1/4)*(b + a*x^4)^(1/4))])/(4*Sqrt[a^2 + b]*(a - Sqrt[a^2 + b])^(3/4)) 
- (3*(a^2 + b + a*Sqrt[a^2 + b])^(3/4)*ArcTan[((a^2 + b + a*Sqrt[a^2 + b]) 
^(1/4)*x)/((a + Sqrt[a^2 + b])^(1/4)*(b + a*x^4)^(1/4))])/(4*Sqrt[a^2 + b] 
*(a + Sqrt[a^2 + b])^(3/4)) + ArcTanh[(a^(1/4)*x)/(b + a*x^4)^(1/4)]/a^(1/ 
4) + (3*(a^2 + b - a*Sqrt[a^2 + b])^(3/4)*ArcTanh[((a^2 + b - a*Sqrt[a^2 + 
 b])^(1/4)*x)/((a - Sqrt[a^2 + b])^(1/4)*(b + a*x^4)^(1/4))])/(4*Sqrt[a^2 
+ b]*(a - Sqrt[a^2 + b])^(3/4)) - (3*(a^2 + b + a*Sqrt[a^2 + b])^(3/4)*Arc 
Tanh[((a^2 + b + a*Sqrt[a^2 + b])^(1/4)*x)/((a + Sqrt[a^2 + b])^(1/4)*(b + 
 a*x^4)^(1/4))])/(4*Sqrt[a^2 + b]*(a + Sqrt[a^2 + b])^(3/4))
 

3.31.68.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
3.31.68.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.25 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.22

method result size
pseudoelliptic \(\frac {3 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-a^{2}-b \right )}{\sum }\frac {\ln \left (\frac {-\textit {\_R} x +\left (a \,x^{4}+b \right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R}}\right ) a^{\frac {1}{4}}-8 \arctan \left (\frac {\left (a \,x^{4}+b \right )^{\frac {1}{4}}}{a^{\frac {1}{4}} x}\right )+4 \ln \left (\frac {a^{\frac {1}{4}} x +\left (a \,x^{4}+b \right )^{\frac {1}{4}}}{-a^{\frac {1}{4}} x +\left (a \,x^{4}+b \right )^{\frac {1}{4}}}\right )}{8 a^{\frac {1}{4}}}\) \(107\)

input
int((2*x^8-a*x^4+b)/(a*x^4+b)^(1/4)/(x^8-2*a*x^4-b),x,method=_RETURNVERBOS 
E)
 
output
1/8*(3*sum(ln((-_R*x+(a*x^4+b)^(1/4))/x)/_R,_R=RootOf(_Z^8-a^2-b))*a^(1/4) 
-8*arctan(1/a^(1/4)/x*(a*x^4+b)^(1/4))+4*ln((a^(1/4)*x+(a*x^4+b)^(1/4))/(- 
a^(1/4)*x+(a*x^4+b)^(1/4))))/a^(1/4)
 
3.31.68.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 415, normalized size of antiderivative = 0.86 \[ \int \frac {b-a x^4+2 x^8}{\sqrt [4]{b+a x^4} \left (-b-2 a x^4+x^8\right )} \, dx=-\frac {\left (3 i - 3\right ) \, \sqrt {2} \log \left (-\frac {\left (i + 1\right ) \, \sqrt {2} {\left (a^{2} + b\right )}^{\frac {1}{8}} x - 2 \, {\left (a x^{4} + b\right )}^{\frac {1}{4}}}{2 \, x}\right )}{16 \, {\left (a^{2} + b\right )}^{\frac {1}{8}}} + \frac {\left (3 i + 3\right ) \, \sqrt {2} \log \left (-\frac {-\left (i - 1\right ) \, \sqrt {2} {\left (a^{2} + b\right )}^{\frac {1}{8}} x - 2 \, {\left (a x^{4} + b\right )}^{\frac {1}{4}}}{2 \, x}\right )}{16 \, {\left (a^{2} + b\right )}^{\frac {1}{8}}} - \frac {\left (3 i + 3\right ) \, \sqrt {2} \log \left (-\frac {\left (i - 1\right ) \, \sqrt {2} {\left (a^{2} + b\right )}^{\frac {1}{8}} x - 2 \, {\left (a x^{4} + b\right )}^{\frac {1}{4}}}{2 \, x}\right )}{16 \, {\left (a^{2} + b\right )}^{\frac {1}{8}}} + \frac {\left (3 i - 3\right ) \, \sqrt {2} \log \left (-\frac {-\left (i + 1\right ) \, \sqrt {2} {\left (a^{2} + b\right )}^{\frac {1}{8}} x - 2 \, {\left (a x^{4} + b\right )}^{\frac {1}{4}}}{2 \, x}\right )}{16 \, {\left (a^{2} + b\right )}^{\frac {1}{8}}} - \frac {3 \, \log \left (\frac {{\left (a^{2} + b\right )}^{\frac {1}{8}} x + {\left (a x^{4} + b\right )}^{\frac {1}{4}}}{x}\right )}{8 \, {\left (a^{2} + b\right )}^{\frac {1}{8}}} + \frac {3 \, \log \left (-\frac {{\left (a^{2} + b\right )}^{\frac {1}{8}} x - {\left (a x^{4} + b\right )}^{\frac {1}{4}}}{x}\right )}{8 \, {\left (a^{2} + b\right )}^{\frac {1}{8}}} + \frac {3 i \, \log \left (\frac {i \, {\left (a^{2} + b\right )}^{\frac {1}{8}} x + {\left (a x^{4} + b\right )}^{\frac {1}{4}}}{x}\right )}{8 \, {\left (a^{2} + b\right )}^{\frac {1}{8}}} - \frac {3 i \, \log \left (\frac {-i \, {\left (a^{2} + b\right )}^{\frac {1}{8}} x + {\left (a x^{4} + b\right )}^{\frac {1}{4}}}{x}\right )}{8 \, {\left (a^{2} + b\right )}^{\frac {1}{8}}} + \frac {\log \left (\frac {a^{\frac {1}{4}} x + {\left (a x^{4} + b\right )}^{\frac {1}{4}}}{x}\right )}{2 \, a^{\frac {1}{4}}} - \frac {\log \left (-\frac {a^{\frac {1}{4}} x - {\left (a x^{4} + b\right )}^{\frac {1}{4}}}{x}\right )}{2 \, a^{\frac {1}{4}}} - \frac {i \, \log \left (\frac {i \, a^{\frac {1}{4}} x + {\left (a x^{4} + b\right )}^{\frac {1}{4}}}{x}\right )}{2 \, a^{\frac {1}{4}}} + \frac {i \, \log \left (\frac {-i \, a^{\frac {1}{4}} x + {\left (a x^{4} + b\right )}^{\frac {1}{4}}}{x}\right )}{2 \, a^{\frac {1}{4}}} \]

input
integrate((2*x^8-a*x^4+b)/(a*x^4+b)^(1/4)/(x^8-2*a*x^4-b),x, algorithm="fr 
icas")
 
output
-(3/16*I - 3/16)*sqrt(2)*log(-1/2*((I + 1)*sqrt(2)*(a^2 + b)^(1/8)*x - 2*( 
a*x^4 + b)^(1/4))/x)/(a^2 + b)^(1/8) + (3/16*I + 3/16)*sqrt(2)*log(-1/2*(- 
(I - 1)*sqrt(2)*(a^2 + b)^(1/8)*x - 2*(a*x^4 + b)^(1/4))/x)/(a^2 + b)^(1/8 
) - (3/16*I + 3/16)*sqrt(2)*log(-1/2*((I - 1)*sqrt(2)*(a^2 + b)^(1/8)*x - 
2*(a*x^4 + b)^(1/4))/x)/(a^2 + b)^(1/8) + (3/16*I - 3/16)*sqrt(2)*log(-1/2 
*(-(I + 1)*sqrt(2)*(a^2 + b)^(1/8)*x - 2*(a*x^4 + b)^(1/4))/x)/(a^2 + b)^( 
1/8) - 3/8*log(((a^2 + b)^(1/8)*x + (a*x^4 + b)^(1/4))/x)/(a^2 + b)^(1/8) 
+ 3/8*log(-((a^2 + b)^(1/8)*x - (a*x^4 + b)^(1/4))/x)/(a^2 + b)^(1/8) + 3/ 
8*I*log((I*(a^2 + b)^(1/8)*x + (a*x^4 + b)^(1/4))/x)/(a^2 + b)^(1/8) - 3/8 
*I*log((-I*(a^2 + b)^(1/8)*x + (a*x^4 + b)^(1/4))/x)/(a^2 + b)^(1/8) + 1/2 
*log((a^(1/4)*x + (a*x^4 + b)^(1/4))/x)/a^(1/4) - 1/2*log(-(a^(1/4)*x - (a 
*x^4 + b)^(1/4))/x)/a^(1/4) - 1/2*I*log((I*a^(1/4)*x + (a*x^4 + b)^(1/4))/ 
x)/a^(1/4) + 1/2*I*log((-I*a^(1/4)*x + (a*x^4 + b)^(1/4))/x)/a^(1/4)
 
3.31.68.6 Sympy [F(-1)]

Timed out. \[ \int \frac {b-a x^4+2 x^8}{\sqrt [4]{b+a x^4} \left (-b-2 a x^4+x^8\right )} \, dx=\text {Timed out} \]

input
integrate((2*x**8-a*x**4+b)/(a*x**4+b)**(1/4)/(x**8-2*a*x**4-b),x)
 
output
Timed out
 
3.31.68.7 Maxima [F]

\[ \int \frac {b-a x^4+2 x^8}{\sqrt [4]{b+a x^4} \left (-b-2 a x^4+x^8\right )} \, dx=\int { \frac {2 \, x^{8} - a x^{4} + b}{{\left (x^{8} - 2 \, a x^{4} - b\right )} {\left (a x^{4} + b\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate((2*x^8-a*x^4+b)/(a*x^4+b)^(1/4)/(x^8-2*a*x^4-b),x, algorithm="ma 
xima")
 
output
integrate((2*x^8 - a*x^4 + b)/((x^8 - 2*a*x^4 - b)*(a*x^4 + b)^(1/4)), x)
 
3.31.68.8 Giac [F]

\[ \int \frac {b-a x^4+2 x^8}{\sqrt [4]{b+a x^4} \left (-b-2 a x^4+x^8\right )} \, dx=\int { \frac {2 \, x^{8} - a x^{4} + b}{{\left (x^{8} - 2 \, a x^{4} - b\right )} {\left (a x^{4} + b\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate((2*x^8-a*x^4+b)/(a*x^4+b)^(1/4)/(x^8-2*a*x^4-b),x, algorithm="gi 
ac")
 
output
integrate((2*x^8 - a*x^4 + b)/((x^8 - 2*a*x^4 - b)*(a*x^4 + b)^(1/4)), x)
 
3.31.68.9 Mupad [F(-1)]

Timed out. \[ \int \frac {b-a x^4+2 x^8}{\sqrt [4]{b+a x^4} \left (-b-2 a x^4+x^8\right )} \, dx=\int -\frac {2\,x^8-a\,x^4+b}{{\left (a\,x^4+b\right )}^{1/4}\,\left (-x^8+2\,a\,x^4+b\right )} \,d x \]

input
int(-(b - a*x^4 + 2*x^8)/((b + a*x^4)^(1/4)*(b + 2*a*x^4 - x^8)),x)
 
output
int(-(b - a*x^4 + 2*x^8)/((b + a*x^4)^(1/4)*(b + 2*a*x^4 - x^8)), x)