3.31.74 \(\int \frac {\sqrt [4]{-x^2+x^6} (1-x^4+x^8)}{x^4 (1+x^4)} \, dx\) [3074]

3.31.74.1 Optimal result
3.31.74.2 Mathematica [C] (verified)
3.31.74.3 Rubi [C] (verified)
3.31.74.4 Maple [A] (verified)
3.31.74.5 Fricas [C] (verification not implemented)
3.31.74.6 Sympy [F]
3.31.74.7 Maxima [F]
3.31.74.8 Giac [F]
3.31.74.9 Mupad [F(-1)]

3.31.74.1 Optimal result

Integrand size = 34, antiderivative size = 501 \[ \int \frac {\sqrt [4]{-x^2+x^6} \left (1-x^4+x^8\right )}{x^4 \left (1+x^4\right )} \, dx=\frac {2 \left (-1+x^4\right ) \sqrt [4]{-x^2+x^6}}{5 x^3}+\frac {3}{4} \sqrt {\frac {1}{2} \left (1+\sqrt {2}\right )} \arctan \left (\frac {\sqrt {2-\sqrt {2}} x}{-\sqrt {2+\sqrt {2}} x+2^{3/4} \sqrt [4]{-x^2+x^6}}\right )+\frac {3}{4} \sqrt {\frac {1}{2} \left (1+\sqrt {2}\right )} \arctan \left (\frac {\sqrt {2-\sqrt {2}} x}{\sqrt {2+\sqrt {2}} x+2^{3/4} \sqrt [4]{-x^2+x^6}}\right )-\frac {3}{4} \sqrt {\frac {1}{2} \left (-1+\sqrt {2}\right )} \arctan \left (\frac {2^{3/4} \sqrt {2+\sqrt {2}} x \sqrt [4]{-x^2+x^6}}{-2 x^2+\sqrt {2} \sqrt {-x^2+x^6}}\right )-\frac {3}{4} \sqrt {\frac {1}{2} \left (1+\sqrt {2}\right )} \text {arctanh}\left (\frac {\frac {\sqrt [4]{2} x^2}{\sqrt {2-\sqrt {2}}}+\frac {\sqrt {-x^2+x^6}}{\sqrt [4]{2} \sqrt {2-\sqrt {2}}}}{x \sqrt [4]{-x^2+x^6}}\right )-\frac {3}{8} \sqrt {\frac {1}{2} \left (-1+\sqrt {2}\right )} \log \left (-2 x^2+2^{3/4} \sqrt {2+\sqrt {2}} x \sqrt [4]{-x^2+x^6}-\sqrt {2} \sqrt {-x^2+x^6}\right )+\frac {3}{8} \sqrt {\frac {1}{2} \left (-1+\sqrt {2}\right )} \log \left (2 \sqrt {2-\sqrt {2}} x^2+2 \sqrt [4]{2} x \sqrt [4]{-x^2+x^6}+\sqrt {4-2 \sqrt {2}} \sqrt {-x^2+x^6}\right ) \]

output
2/5*(x^4-1)*(x^6-x^2)^(1/4)/x^3+3/8*(2+2*2^(1/2))^(1/2)*arctan((2-2^(1/2)) 
^(1/2)*x/(-(2+2^(1/2))^(1/2)*x+2^(3/4)*(x^6-x^2)^(1/4)))+3/8*(2+2*2^(1/2)) 
^(1/2)*arctan((2-2^(1/2))^(1/2)*x/((2+2^(1/2))^(1/2)*x+2^(3/4)*(x^6-x^2)^( 
1/4)))-3/8*(-2+2*2^(1/2))^(1/2)*arctan(2^(3/4)*(2+2^(1/2))^(1/2)*x*(x^6-x^ 
2)^(1/4)/(-2*x^2+2^(1/2)*(x^6-x^2)^(1/2)))-3/8*(2+2*2^(1/2))^(1/2)*arctanh 
((2^(1/4)*x^2/(2-2^(1/2))^(1/2)+1/2*(x^6-x^2)^(1/2)*2^(3/4)/(2-2^(1/2))^(1 
/2))/x/(x^6-x^2)^(1/4))-3/16*(-2+2*2^(1/2))^(1/2)*ln(-2*x^2+2^(3/4)*(2+2^( 
1/2))^(1/2)*x*(x^6-x^2)^(1/4)-2^(1/2)*(x^6-x^2)^(1/2))+3/16*(-2+2*2^(1/2)) 
^(1/2)*ln(2*(2-2^(1/2))^(1/2)*x^2+2*2^(1/4)*x*(x^6-x^2)^(1/4)+(4-2*2^(1/2) 
)^(1/2)*(x^6-x^2)^(1/2))
 
3.31.74.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.97 (sec) , antiderivative size = 203, normalized size of antiderivative = 0.41 \[ \int \frac {\sqrt [4]{-x^2+x^6} \left (1-x^4+x^8\right )}{x^4 \left (1+x^4\right )} \, dx=\frac {\sqrt [4]{x^2 \left (-1+x^4\right )} \left (-8 \sqrt [4]{-1+x^4}+8 x^4 \sqrt [4]{-1+x^4}+15 \sqrt {1+i} x^{5/2} \arctan \left (\frac {\sqrt {-1-i} \sqrt {x}}{\sqrt [4]{-1+x^4}}\right )+15 \sqrt {1-i} x^{5/2} \arctan \left (\frac {\sqrt {-1+i} \sqrt {x}}{\sqrt [4]{-1+x^4}}\right )-15 \sqrt {-1+i} x^{5/2} \arctan \left (\frac {\sqrt {1-i} \sqrt {x}}{\sqrt [4]{-1+x^4}}\right )-15 \sqrt {-1-i} x^{5/2} \arctan \left (\frac {\sqrt {1+i} \sqrt {x}}{\sqrt [4]{-1+x^4}}\right )\right )}{20 x^3 \sqrt [4]{-1+x^4}} \]

input
Integrate[((-x^2 + x^6)^(1/4)*(1 - x^4 + x^8))/(x^4*(1 + x^4)),x]
 
output
((x^2*(-1 + x^4))^(1/4)*(-8*(-1 + x^4)^(1/4) + 8*x^4*(-1 + x^4)^(1/4) + 15 
*Sqrt[1 + I]*x^(5/2)*ArcTan[(Sqrt[-1 - I]*Sqrt[x])/(-1 + x^4)^(1/4)] + 15* 
Sqrt[1 - I]*x^(5/2)*ArcTan[(Sqrt[-1 + I]*Sqrt[x])/(-1 + x^4)^(1/4)] - 15*S 
qrt[-1 + I]*x^(5/2)*ArcTan[(Sqrt[1 - I]*Sqrt[x])/(-1 + x^4)^(1/4)] - 15*Sq 
rt[-1 - I]*x^(5/2)*ArcTan[(Sqrt[1 + I]*Sqrt[x])/(-1 + x^4)^(1/4)]))/(20*x^ 
3*(-1 + x^4)^(1/4))
 
3.31.74.3 Rubi [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 0.72 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.32, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {2467, 2035, 7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [4]{x^6-x^2} \left (x^8-x^4+1\right )}{x^4 \left (x^4+1\right )} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt [4]{x^6-x^2} \int \frac {\sqrt [4]{x^4-1} \left (x^8-x^4+1\right )}{x^{7/2} \left (x^4+1\right )}dx}{\sqrt {x} \sqrt [4]{x^4-1}}\)

\(\Big \downarrow \) 2035

\(\displaystyle \frac {2 \sqrt [4]{x^6-x^2} \int \frac {\sqrt [4]{x^4-1} \left (x^8-x^4+1\right )}{x^3 \left (x^4+1\right )}d\sqrt {x}}{\sqrt {x} \sqrt [4]{x^4-1}}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {2 \sqrt [4]{x^6-x^2} \int \left (\sqrt [4]{x^4-1} x-\frac {3 \sqrt [4]{x^4-1} x}{x^4+1}+\frac {\sqrt [4]{x^4-1}}{x^3}\right )d\sqrt {x}}{\sqrt {x} \sqrt [4]{x^4-1}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 \sqrt [4]{x^6-x^2} \left (-\frac {\sqrt [4]{x^4-1} x^{3/2} \operatorname {AppellF1}\left (\frac {3}{8},-\frac {1}{4},1,\frac {11}{8},x^4,-x^4\right )}{\sqrt [4]{1-x^4}}+\frac {\sqrt [4]{x^4-1} x^{3/2} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {3}{8},\frac {11}{8},x^4\right )}{3 \sqrt [4]{1-x^4}}-\frac {\sqrt [4]{x^4-1} \operatorname {Hypergeometric2F1}\left (-\frac {5}{8},-\frac {1}{4},\frac {3}{8},x^4\right )}{5 \sqrt [4]{1-x^4} x^{5/2}}\right )}{\sqrt {x} \sqrt [4]{x^4-1}}\)

input
Int[((-x^2 + x^6)^(1/4)*(1 - x^4 + x^8))/(x^4*(1 + x^4)),x]
 
output
(2*(-x^2 + x^6)^(1/4)*(-((x^(3/2)*(-1 + x^4)^(1/4)*AppellF1[3/8, -1/4, 1, 
11/8, x^4, -x^4])/(1 - x^4)^(1/4)) - ((-1 + x^4)^(1/4)*Hypergeometric2F1[- 
5/8, -1/4, 3/8, x^4])/(5*x^(5/2)*(1 - x^4)^(1/4)) + (x^(3/2)*(-1 + x^4)^(1 
/4)*Hypergeometric2F1[-1/4, 3/8, 11/8, x^4])/(3*(1 - x^4)^(1/4))))/(Sqrt[x 
]*(-1 + x^4)^(1/4))
 

3.31.74.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.31.74.4 Maple [A] (verified)

Time = 143.55 (sec) , antiderivative size = 407, normalized size of antiderivative = 0.81

method result size
pseudoelliptic \(\frac {32 \left (x^{4}-1\right ) \left (x^{6}-x^{2}\right )^{\frac {1}{4}}+15 x^{3} \left (\left (-\ln \left (\frac {-\sqrt {2+2 \sqrt {2}}\, x \left (x^{6}-x^{2}\right )^{\frac {1}{4}}+\sqrt {2}\, x^{2}+\sqrt {x^{6}-x^{2}}}{x^{2}}\right )-2 \arctan \left (\frac {x \sqrt {-2+2 \sqrt {2}}-2 \left (x^{6}-x^{2}\right )^{\frac {1}{4}}}{\sqrt {2+2 \sqrt {2}}\, x}\right )+\ln \left (\frac {\sqrt {2+2 \sqrt {2}}\, x \left (x^{6}-x^{2}\right )^{\frac {1}{4}}+\sqrt {2}\, x^{2}+\sqrt {x^{6}-x^{2}}}{x^{2}}\right )+2 \arctan \left (\frac {x \sqrt {-2+2 \sqrt {2}}+2 \left (x^{6}-x^{2}\right )^{\frac {1}{4}}}{\sqrt {2+2 \sqrt {2}}\, x}\right )\right ) \sqrt {-2+2 \sqrt {2}}+\sqrt {2+2 \sqrt {2}}\, \left (\ln \left (\frac {\sqrt {2}\, x^{2}-x \sqrt {-2+2 \sqrt {2}}\, \left (x^{6}-x^{2}\right )^{\frac {1}{4}}+\sqrt {x^{6}-x^{2}}}{x^{2}}\right )+2 \arctan \left (\frac {\sqrt {2+2 \sqrt {2}}\, x -2 \left (x^{6}-x^{2}\right )^{\frac {1}{4}}}{x \sqrt {-2+2 \sqrt {2}}}\right )-\ln \left (\frac {x \sqrt {-2+2 \sqrt {2}}\, \left (x^{6}-x^{2}\right )^{\frac {1}{4}}+\sqrt {2}\, x^{2}+\sqrt {x^{6}-x^{2}}}{x^{2}}\right )-2 \arctan \left (\frac {\sqrt {2+2 \sqrt {2}}\, x +2 \left (x^{6}-x^{2}\right )^{\frac {1}{4}}}{x \sqrt {-2+2 \sqrt {2}}}\right )\right )\right )}{80 x^{3}}\) \(407\)
trager \(\text {Expression too large to display}\) \(2947\)
risch \(\text {Expression too large to display}\) \(7288\)

input
int((x^6-x^2)^(1/4)*(x^8-x^4+1)/x^4/(x^4+1),x,method=_RETURNVERBOSE)
 
output
1/80*(32*(x^4-1)*(x^6-x^2)^(1/4)+15*x^3*((-ln((-(2+2*2^(1/2))^(1/2)*x*(x^6 
-x^2)^(1/4)+2^(1/2)*x^2+(x^6-x^2)^(1/2))/x^2)-2*arctan((x*(-2+2*2^(1/2))^( 
1/2)-2*(x^6-x^2)^(1/4))/(2+2*2^(1/2))^(1/2)/x)+ln(((2+2*2^(1/2))^(1/2)*x*( 
x^6-x^2)^(1/4)+2^(1/2)*x^2+(x^6-x^2)^(1/2))/x^2)+2*arctan((x*(-2+2*2^(1/2) 
)^(1/2)+2*(x^6-x^2)^(1/4))/(2+2*2^(1/2))^(1/2)/x))*(-2+2*2^(1/2))^(1/2)+(2 
+2*2^(1/2))^(1/2)*(ln((2^(1/2)*x^2-x*(-2+2*2^(1/2))^(1/2)*(x^6-x^2)^(1/4)+ 
(x^6-x^2)^(1/2))/x^2)+2*arctan(((2+2*2^(1/2))^(1/2)*x-2*(x^6-x^2)^(1/4))/x 
/(-2+2*2^(1/2))^(1/2))-ln((x*(-2+2*2^(1/2))^(1/2)*(x^6-x^2)^(1/4)+2^(1/2)* 
x^2+(x^6-x^2)^(1/2))/x^2)-2*arctan(((2+2*2^(1/2))^(1/2)*x+2*(x^6-x^2)^(1/4 
))/x/(-2+2*2^(1/2))^(1/2)))))/x^3
 
3.31.74.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 22.03 (sec) , antiderivative size = 1108, normalized size of antiderivative = 2.21 \[ \int \frac {\sqrt [4]{-x^2+x^6} \left (1-x^4+x^8\right )}{x^4 \left (1+x^4\right )} \, dx=\text {Too large to display} \]

input
integrate((x^6-x^2)^(1/4)*(x^8-x^4+1)/x^4/(x^4+1),x, algorithm="fricas")
 
output
1/80*(5*sqrt(-9*I - 9)*x^3*log(-(4*sqrt(-9*I - 9)*sqrt(x^6 - x^2)*((709802 
18386*I + 35099697147)*x^5 + (70199394294*I - 141960436772)*x^3 - (7098021 
8386*I + 35099697147)*x) + 12*(x^6 - x^2)^(3/4)*(-(35099697147*I - 7098021 
8386)*x^4 + (141960436772*I + 70199394294)*x^2 + 35099697147*I - 709802183 
86) - sqrt(-9*I - 9)*(-(35880521239*I + 106079915533)*x^9 - (424319662132* 
I - 143522084956)*x^7 + (215283127434*I + 636479493198)*x^5 + (42431966213 
2*I - 143522084956)*x^3 - (35880521239*I + 106079915533)*x) + 12*((3588052 
1239*I + 106079915533)*x^6 + (212159831066*I - 71761042478)*x^4 - (3588052 
1239*I + 106079915533)*x^2)*(x^6 - x^2)^(1/4))/(x^9 + 2*x^5 + x)) + 5*sqrt 
(-9*I + 9)*x^3*log(-(4*sqrt(-9*I + 9)*sqrt(x^6 - x^2)*(-(70980218386*I - 3 
5099697147)*x^5 - (70199394294*I + 141960436772)*x^3 + (70980218386*I - 35 
099697147)*x) + 12*(x^6 - x^2)^(3/4)*((35099697147*I + 70980218386)*x^4 - 
(141960436772*I - 70199394294)*x^2 - 35099697147*I - 70980218386) - sqrt(- 
9*I + 9)*(-(35880521239*I - 106079915533)*x^9 - (424319662132*I + 14352208 
4956)*x^7 + (215283127434*I - 636479493198)*x^5 + (424319662132*I + 143522 
084956)*x^3 - (35880521239*I - 106079915533)*x) + 12*(x^6 - x^2)^(1/4)*((3 
5880521239*I - 106079915533)*x^6 + (212159831066*I + 71761042478)*x^4 - (3 
5880521239*I - 106079915533)*x^2))/(x^9 + 2*x^5 + x)) - 5*sqrt(-9*I + 9)*x 
^3*log(-(4*sqrt(-9*I + 9)*sqrt(x^6 - x^2)*((70980218386*I - 35099697147)*x 
^5 + (70199394294*I + 141960436772)*x^3 - (70980218386*I - 35099697147)...
 
3.31.74.6 Sympy [F]

\[ \int \frac {\sqrt [4]{-x^2+x^6} \left (1-x^4+x^8\right )}{x^4 \left (1+x^4\right )} \, dx=\int \frac {\sqrt [4]{x^{2} \left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right )} \left (x^{8} - x^{4} + 1\right )}{x^{4} \left (x^{4} + 1\right )}\, dx \]

input
integrate((x**6-x**2)**(1/4)*(x**8-x**4+1)/x**4/(x**4+1),x)
 
output
Integral((x**2*(x - 1)*(x + 1)*(x**2 + 1))**(1/4)*(x**8 - x**4 + 1)/(x**4* 
(x**4 + 1)), x)
 
3.31.74.7 Maxima [F]

\[ \int \frac {\sqrt [4]{-x^2+x^6} \left (1-x^4+x^8\right )}{x^4 \left (1+x^4\right )} \, dx=\int { \frac {{\left (x^{8} - x^{4} + 1\right )} {\left (x^{6} - x^{2}\right )}^{\frac {1}{4}}}{{\left (x^{4} + 1\right )} x^{4}} \,d x } \]

input
integrate((x^6-x^2)^(1/4)*(x^8-x^4+1)/x^4/(x^4+1),x, algorithm="maxima")
 
output
integrate((x^8 - x^4 + 1)*(x^6 - x^2)^(1/4)/((x^4 + 1)*x^4), x)
 
3.31.74.8 Giac [F]

\[ \int \frac {\sqrt [4]{-x^2+x^6} \left (1-x^4+x^8\right )}{x^4 \left (1+x^4\right )} \, dx=\int { \frac {{\left (x^{8} - x^{4} + 1\right )} {\left (x^{6} - x^{2}\right )}^{\frac {1}{4}}}{{\left (x^{4} + 1\right )} x^{4}} \,d x } \]

input
integrate((x^6-x^2)^(1/4)*(x^8-x^4+1)/x^4/(x^4+1),x, algorithm="giac")
 
output
integrate((x^8 - x^4 + 1)*(x^6 - x^2)^(1/4)/((x^4 + 1)*x^4), x)
 
3.31.74.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt [4]{-x^2+x^6} \left (1-x^4+x^8\right )}{x^4 \left (1+x^4\right )} \, dx=\int \frac {{\left (x^6-x^2\right )}^{1/4}\,\left (x^8-x^4+1\right )}{x^4\,\left (x^4+1\right )} \,d x \]

input
int(((x^6 - x^2)^(1/4)*(x^8 - x^4 + 1))/(x^4*(x^4 + 1)),x)
 
output
int(((x^6 - x^2)^(1/4)*(x^8 - x^4 + 1))/(x^4*(x^4 + 1)), x)