3.31.100 \(\int \frac {1}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7)} \, dx\) [3100]

3.31.100.1 Optimal result
3.31.100.2 Mathematica [A] (verified)
3.31.100.3 Rubi [A] (verified)
3.31.100.4 Maple [F]
3.31.100.5 Fricas [B] (verification not implemented)
3.31.100.6 Sympy [F]
3.31.100.7 Maxima [F]
3.31.100.8 Giac [F(-2)]
3.31.100.9 Mupad [F(-1)]

3.31.100.1 Optimal result

Integrand size = 41, antiderivative size = 561 \[ \int \frac {1}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7)} \, dx=\frac {2 \text {arctanh}\left (\frac {\sqrt [4]{c_3} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\sqrt {\sqrt {c_3} c_4-\sqrt {c_1} c_5}}\right ) \sqrt [4]{c_3}}{\sqrt {\sqrt {c_3} c_4-\sqrt {c_1} c_5} c_7}+\frac {2 \text {arctanh}\left (\frac {\sqrt [4]{c_3} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\sqrt {\sqrt {c_3} c_4+\sqrt {c_1} c_5}}\right ) \sqrt [4]{c_3}}{\sqrt {\sqrt {c_3} c_4+\sqrt {c_1} c_5} c_7}+\frac {2 \arctan \left (\frac {\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \sqrt {c_3 c_6-c_2 c_7}}{\sqrt {-c_3 c_4 c_6+c_2 c_4 c_7-c_5 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7}}}\right ) \sqrt {c_3 c_6-c_2 c_7}}{c_7 \sqrt {-c_3 c_4 c_6+c_2 c_4 c_7-c_5 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7}}}+\frac {2 \arctan \left (\frac {\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \sqrt {c_3 c_6-c_2 c_7}}{\sqrt {-c_3 c_4 c_6+c_2 c_4 c_7+c_5 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7}}}\right ) \sqrt {c_3 c_6-c_2 c_7}}{c_7 \sqrt {-c_3 c_4 c_6+c_2 c_4 c_7+c_5 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7}}} \]

output
2*arctanh(_C3^(1/4)*(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(_C3^( 
1/2)*_C4-_C1^(1/2)*_C5)^(1/2))*_C3^(1/4)/(_C3^(1/2)*_C4-_C1^(1/2)*_C5)^(1/ 
2)/_C7+2*arctanh(_C3^(1/4)*(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2) 
/(_C3^(1/2)*_C4+_C1^(1/2)*_C5)^(1/2))*_C3^(1/4)/(_C3^(1/2)*_C4+_C1^(1/2)*_ 
C5)^(1/2)/_C7+2*arctan((_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)*(-_ 
C2*_C7+_C3*_C6)^(1/2)/(-_C3*_C4*_C6+_C2*_C4*_C7-_C5*(-_C0*_C7+_C1*_C6)^(1/ 
2)*(-_C2*_C7+_C3*_C6)^(1/2))^(1/2))*(-_C2*_C7+_C3*_C6)^(1/2)/_C7/(-_C3*_C4 
*_C6+_C2*_C4*_C7-_C5*(-_C0*_C7+_C1*_C6)^(1/2)*(-_C2*_C7+_C3*_C6)^(1/2))^(1 
/2)+2*arctan((_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)*(-_C2*_C7+_C3 
*_C6)^(1/2)/(-_C3*_C4*_C6+_C2*_C4*_C7+_C5*(-_C0*_C7+_C1*_C6)^(1/2)*(-_C2*_ 
C7+_C3*_C6)^(1/2))^(1/2))*(-_C2*_C7+_C3*_C6)^(1/2)/_C7/(-_C3*_C4*_C6+_C2*_ 
C4*_C7+_C5*(-_C0*_C7+_C1*_C6)^(1/2)*(-_C2*_C7+_C3*_C6)^(1/2))^(1/2)
 
3.31.100.2 Mathematica [A] (verified)

Time = 2.34 (sec) , antiderivative size = 535, normalized size of antiderivative = 0.95 \[ \int \frac {1}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7)} \, dx=\frac {2 \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{c_3} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\sqrt {\sqrt {c_3} c_4-\sqrt {c_1} c_5}}\right ) \sqrt [4]{c_3}}{\sqrt {\sqrt {c_3} c_4-\sqrt {c_1} c_5}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{c_3} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\sqrt {\sqrt {c_3} c_4+\sqrt {c_1} c_5}}\right ) \sqrt [4]{c_3}}{\sqrt {\sqrt {c_3} c_4+\sqrt {c_1} c_5}}+\sqrt {c_3 c_6-c_2 c_7} \left (-\frac {\text {arctanh}\left (\frac {\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \sqrt {c_3 c_6-c_2 c_7}}{\sqrt {c_3 c_4 c_6-c_2 c_4 c_7-c_5 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7}}}\right )}{\sqrt {c_3 c_4 c_6-c_2 c_4 c_7-c_5 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7}}}-\frac {\text {arctanh}\left (\frac {\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \sqrt {c_3 c_6-c_2 c_7}}{\sqrt {c_3 c_4 c_6-c_2 c_4 c_7+c_5 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7}}}\right )}{\sqrt {c_3 c_4 c_6-c_2 c_4 c_7+c_5 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7}}}\right )\right )}{c_7} \]

input
Integrate[1/(Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5]]*(C[6] 
 + x*C[7])),x]
 
output
(2*((ArcTanh[(C[3]^(1/4)*Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])] 
*C[5]])/Sqrt[Sqrt[C[3]]*C[4] - Sqrt[C[1]]*C[5]]]*C[3]^(1/4))/Sqrt[Sqrt[C[3 
]]*C[4] - Sqrt[C[1]]*C[5]] + (ArcTanh[(C[3]^(1/4)*Sqrt[C[4] + Sqrt[(C[0] + 
 x*C[1])/(C[2] + x*C[3])]*C[5]])/Sqrt[Sqrt[C[3]]*C[4] + Sqrt[C[1]]*C[5]]]* 
C[3]^(1/4))/Sqrt[Sqrt[C[3]]*C[4] + Sqrt[C[1]]*C[5]] + Sqrt[C[3]*C[6] - C[2 
]*C[7]]*(-(ArcTanh[(Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5] 
]*Sqrt[C[3]*C[6] - C[2]*C[7]])/Sqrt[C[3]*C[4]*C[6] - C[2]*C[4]*C[7] - C[5] 
*Sqrt[C[1]*C[6] - C[0]*C[7]]*Sqrt[C[3]*C[6] - C[2]*C[7]]]]/Sqrt[C[3]*C[4]* 
C[6] - C[2]*C[4]*C[7] - C[5]*Sqrt[C[1]*C[6] - C[0]*C[7]]*Sqrt[C[3]*C[6] - 
C[2]*C[7]]]) - ArcTanh[(Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]* 
C[5]]*Sqrt[C[3]*C[6] - C[2]*C[7]])/Sqrt[C[3]*C[4]*C[6] - C[2]*C[4]*C[7] + 
C[5]*Sqrt[C[1]*C[6] - C[0]*C[7]]*Sqrt[C[3]*C[6] - C[2]*C[7]]]]/Sqrt[C[3]*C 
[4]*C[6] - C[2]*C[4]*C[7] + C[5]*Sqrt[C[1]*C[6] - C[0]*C[7]]*Sqrt[C[3]*C[6 
] - C[2]*C[7]]])))/C[7]
 
3.31.100.3 Rubi [A] (verified)

Time = 4.44 (sec) , antiderivative size = 659, normalized size of antiderivative = 1.17, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.122, Rules used = {7268, 7267, 7292, 7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4} (c_7 x+c_6)} \, dx\)

\(\Big \downarrow \) 7268

\(\displaystyle 2 (c_1 c_2-c_0 c_3) \int \frac {\sqrt {\frac {c_0+x c_1}{c_2+x c_3}}}{\left (c_1-\frac {(c_0+x c_1) c_3}{c_2+x c_3}\right ) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \left (c_1 c_6-c_0 c_7-\frac {(c_0+x c_1) (c_3 c_6-c_2 c_7)}{c_2+x c_3}\right )}d\sqrt {\frac {c_0+x c_1}{c_2+x c_3}}\)

\(\Big \downarrow \) 7267

\(\displaystyle \frac {4 (c_1 c_2-c_0 c_3) \int \frac {\frac {c_0+x c_1}{c_2+x c_3}-c_4}{\left (c_1-\frac {c_3 \left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ){}^2}{c_5{}^2}\right ) \left (-\frac {(c_3 c_6-c_2 c_7) \left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ){}^2}{c_5{}^2}+c_1 c_6-c_0 c_7\right )}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{c_5{}^2}\)

\(\Big \downarrow \) 7292

\(\displaystyle \frac {4 (c_1 c_2-c_0 c_3) \int \frac {\frac {c_0+x c_1}{c_2+x c_3}-c_4}{\left (-\frac {c_3 (c_0+x c_1){}^2}{(c_2+x c_3){}^2 c_5{}^2}+\frac {2 c_3 c_4 (c_0+x c_1)}{(c_2+x c_3) c_5{}^2}+c_1-\frac {c_3 c_4{}^2}{c_5{}^2}\right ) \left (-\frac {(c_3 c_6-c_2 c_7) (c_0+x c_1){}^2}{(c_2+x c_3){}^2 c_5{}^2}+\frac {2 c_4 (c_3 c_6-c_2 c_7) (c_0+x c_1)}{(c_2+x c_3) c_5{}^2}+c_1 c_6-\frac {c_3 c_4{}^2 c_6}{c_5{}^2}-c_0 c_7+\frac {c_2 c_4{}^2 c_7}{c_5{}^2}\right )}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{c_5{}^2}\)

\(\Big \downarrow \) 7279

\(\displaystyle \frac {4 (c_1 c_2-c_0 c_3) \int \left (\frac {c_3 \left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ) c_5{}^2}{(c_1 c_2-c_0 c_3) \left (-\frac {c_3 (c_0+x c_1){}^2}{(c_2+x c_3){}^2}+\frac {2 c_3 c_4 (c_0+x c_1)}{c_2+x c_3}-c_3 c_4{}^2+c_1 c_5{}^2\right ) c_7}+\frac {\left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ) (c_3 c_6-c_2 c_7) c_5{}^2}{(c_1 c_2-c_0 c_3) c_7 \left (\frac {(c_3 c_6-c_2 c_7) (c_0+x c_1){}^2}{(c_2+x c_3){}^2}-\frac {2 c_4 (c_3 c_6-c_2 c_7) (c_0+x c_1)}{c_2+x c_3}+c_3 c_4{}^2 c_6-c_1 c_5{}^2 c_6-\left (c_2 c_4{}^2-c_0 c_5{}^2\right ) c_7\right )}\right )d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{c_5{}^2}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {4 (c_1 c_2-c_0 c_3) \left (-\frac {\sqrt {c_3 c_6-c_2 c_7} c_5{}^2 \text {arctanh}\left (\frac {\sqrt {c_3 c_6-c_2 c_7} \sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}}{\sqrt {-\sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7} c_5+c_3 c_4 c_6-c_2 c_4 c_7}}\right )}{2 (c_1 c_2-c_0 c_3) c_7 \sqrt {-\sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7} c_5+c_3 c_4 c_6-c_2 c_4 c_7}}-\frac {\sqrt {c_3 c_6-c_2 c_7} c_5{}^2 \text {arctanh}\left (\frac {\sqrt {c_3 c_6-c_2 c_7} \sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}}{\sqrt {\sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7} c_5+c_3 c_4 c_6-c_2 c_4 c_7}}\right )}{2 (c_1 c_2-c_0 c_3) c_7 \sqrt {\sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7} c_5+c_3 c_4 c_6-c_2 c_4 c_7}}+\frac {\sqrt [4]{c_3} c_5{}^2 \text {arctanh}\left (\frac {\sqrt [4]{c_3} \sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}}{\sqrt {\sqrt {c_3} c_4-\sqrt {c_1} c_5}}\right )}{2 (c_1 c_2-c_0 c_3) \sqrt {\sqrt {c_3} c_4-\sqrt {c_1} c_5} c_7}+\frac {\sqrt [4]{c_3} c_5{}^2 \text {arctanh}\left (\frac {\sqrt [4]{c_3} \sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}}{\sqrt {\sqrt {c_3} c_4+\sqrt {c_1} c_5}}\right )}{2 (c_1 c_2-c_0 c_3) \sqrt {\sqrt {c_3} c_4+\sqrt {c_1} c_5} c_7}\right )}{c_5{}^2}\)

input
Int[1/(Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5]]*(C[6] + x*C 
[7])),x]
 
output
(4*(C[1]*C[2] - C[0]*C[3])*((ArcTanh[(C[3]^(1/4)*Sqrt[C[4] + Sqrt[(C[0] + 
x*C[1])/(C[2] + x*C[3])]*C[5]])/Sqrt[Sqrt[C[3]]*C[4] - Sqrt[C[1]]*C[5]]]*C 
[3]^(1/4)*C[5]^2)/(2*(C[1]*C[2] - C[0]*C[3])*Sqrt[Sqrt[C[3]]*C[4] - Sqrt[C 
[1]]*C[5]]*C[7]) + (ArcTanh[(C[3]^(1/4)*Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/( 
C[2] + x*C[3])]*C[5]])/Sqrt[Sqrt[C[3]]*C[4] + Sqrt[C[1]]*C[5]]]*C[3]^(1/4) 
*C[5]^2)/(2*(C[1]*C[2] - C[0]*C[3])*Sqrt[Sqrt[C[3]]*C[4] + Sqrt[C[1]]*C[5] 
]*C[7]) - (ArcTanh[(Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5] 
]*Sqrt[C[3]*C[6] - C[2]*C[7]])/Sqrt[C[3]*C[4]*C[6] - C[2]*C[4]*C[7] - C[5] 
*Sqrt[C[1]*C[6] - C[0]*C[7]]*Sqrt[C[3]*C[6] - C[2]*C[7]]]]*C[5]^2*Sqrt[C[3 
]*C[6] - C[2]*C[7]])/(2*(C[1]*C[2] - C[0]*C[3])*C[7]*Sqrt[C[3]*C[4]*C[6] - 
 C[2]*C[4]*C[7] - C[5]*Sqrt[C[1]*C[6] - C[0]*C[7]]*Sqrt[C[3]*C[6] - C[2]*C 
[7]]]) - (ArcTanh[(Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5]] 
*Sqrt[C[3]*C[6] - C[2]*C[7]])/Sqrt[C[3]*C[4]*C[6] - C[2]*C[4]*C[7] + C[5]* 
Sqrt[C[1]*C[6] - C[0]*C[7]]*Sqrt[C[3]*C[6] - C[2]*C[7]]]]*C[5]^2*Sqrt[C[3] 
*C[6] - C[2]*C[7]])/(2*(C[1]*C[2] - C[0]*C[3])*C[7]*Sqrt[C[3]*C[4]*C[6] - 
C[2]*C[4]*C[7] + C[5]*Sqrt[C[1]*C[6] - C[0]*C[7]]*Sqrt[C[3]*C[6] - C[2]*C[ 
7]]])))/C[5]^2
 

3.31.100.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7267
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfLinear[u, x]}, Si 
mp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/lst[[2]])], x 
] /;  !FalseQ[lst] && SubstForFractionalPowerQ[u, lst[[3]], x]]
 

rule 7268
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfQuotientOfLinears 
[u, x]}, Simp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/ls 
t[[2]])], x] /;  !FalseQ[lst]]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 

rule 7292
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =! 
= u]
 
3.31.100.4 Maple [F]

\[\int \frac {1}{\sqrt {\textit {\_C4} +\sqrt {\frac {\textit {\_C1} x +\textit {\_C0}}{\textit {\_C3} x +\textit {\_C2}}}\, \textit {\_C5}}\, \left (\textit {\_C7} x +\textit {\_C6} \right )}d x\]

input
int(1/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(_C7*x+_C6),x)
 
output
int(1/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(_C7*x+_C6),x)
 
3.31.100.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3633 vs. \(2 (357) = 714\).

Time = 170.25 (sec) , antiderivative size = 3633, normalized size of antiderivative = 6.48 \[ \int \frac {1}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7)} \, dx=\text {Too large to display} \]

input
integrate(1/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(_C7*x+_C6),x, 
 algorithm="fricas")
 
output
sqrt((C3*C4*C6 - C2*C4*C7 + ((C3*C4^2 - C1*C5^2)*C6*C7^2 - (C2*C4^2 - C0*C 
5^2)*C7^3)*sqrt((C1*C3*C5^2*C6^2 + C0*C2*C5^2*C7^2 - (C1*C2 + C0*C3)*C5^2* 
C6*C7)/((C3^2*C4^4 - 2*C1*C3*C4^2*C5^2 + C1^2*C5^4)*C6^2*C7^4 - 2*(C2*C3*C 
4^4 + C0*C1*C5^4 - (C1*C2 + C0*C3)*C4^2*C5^2)*C6*C7^5 + (C2^2*C4^4 - 2*C0* 
C2*C4^2*C5^2 + C0^2*C5^4)*C7^6)))/((C3*C4^2 - C1*C5^2)*C6*C7^2 - (C2*C4^2 
- C0*C5^2)*C7^3))*log(-4*(C3*C6 - C2*C7)*sqrt(C5*sqrt((C1*x + C0)/(C3*x + 
C2)) + C4) + 4*(C3*C4*C6*C7 - C2*C4*C7^2 - ((C3*C4^2 - C1*C5^2)*C6*C7^3 - 
(C2*C4^2 - C0*C5^2)*C7^4)*sqrt((C1*C3*C5^2*C6^2 + C0*C2*C5^2*C7^2 - (C1*C2 
 + C0*C3)*C5^2*C6*C7)/((C3^2*C4^4 - 2*C1*C3*C4^2*C5^2 + C1^2*C5^4)*C6^2*C7 
^4 - 2*(C2*C3*C4^4 + C0*C1*C5^4 - (C1*C2 + C0*C3)*C4^2*C5^2)*C6*C7^5 + (C2 
^2*C4^4 - 2*C0*C2*C4^2*C5^2 + C0^2*C5^4)*C7^6)))*sqrt((C3*C4*C6 - C2*C4*C7 
 + ((C3*C4^2 - C1*C5^2)*C6*C7^2 - (C2*C4^2 - C0*C5^2)*C7^3)*sqrt((C1*C3*C5 
^2*C6^2 + C0*C2*C5^2*C7^2 - (C1*C2 + C0*C3)*C5^2*C6*C7)/((C3^2*C4^4 - 2*C1 
*C3*C4^2*C5^2 + C1^2*C5^4)*C6^2*C7^4 - 2*(C2*C3*C4^4 + C0*C1*C5^4 - (C1*C2 
 + C0*C3)*C4^2*C5^2)*C6*C7^5 + (C2^2*C4^4 - 2*C0*C2*C4^2*C5^2 + C0^2*C5^4) 
*C7^6)))/((C3*C4^2 - C1*C5^2)*C6*C7^2 - (C2*C4^2 - C0*C5^2)*C7^3))) - sqrt 
((C3*C4*C6 - C2*C4*C7 + ((C3*C4^2 - C1*C5^2)*C6*C7^2 - (C2*C4^2 - C0*C5^2) 
*C7^3)*sqrt((C1*C3*C5^2*C6^2 + C0*C2*C5^2*C7^2 - (C1*C2 + C0*C3)*C5^2*C6*C 
7)/((C3^2*C4^4 - 2*C1*C3*C4^2*C5^2 + C1^2*C5^4)*C6^2*C7^4 - 2*(C2*C3*C4^4 
+ C0*C1*C5^4 - (C1*C2 + C0*C3)*C4^2*C5^2)*C6*C7^5 + (C2^2*C4^4 - 2*C0*C...
 
3.31.100.6 Sympy [F]

\[ \int \frac {1}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7)} \, dx=\int \frac {1}{\sqrt {_C4 + _C5 \sqrt {\frac {_C0}{_C2 + _C3 x} + \frac {_C1 x}{_C2 + _C3 x}}} \left (_C6 + _C7 x\right )}\, dx \]

input
integrate(1/(_C4+((_C1*x+_C0)/(_C3*x+_C2))**(1/2)*_C5)**(1/2)/(_C7*x+_C6), 
x)
 
output
Integral(1/(sqrt(_C4 + _C5*sqrt(_C0/(_C2 + _C3*x) + _C1*x/(_C2 + _C3*x)))* 
(_C6 + _C7*x)), x)
 
3.31.100.7 Maxima [F]

\[ \text {Unable to display latex} \]

input
integrate(1/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(_C7*x+_C6),x, 
 algorithm="maxima")
 
output
integrate(1/((_C7*x + _C6)*sqrt(_C5*sqrt((_C1*x + _C0)/(_C3*x + _C2)) + _C 
4)), x)
 
3.31.100.8 Giac [F(-2)]

Exception generated. \[ \int \frac {1}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7)} \, dx=\text {Exception raised: TypeError} \]

input
integrate(1/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(_C7*x+_C6),x, 
 algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(con 
st gen &
 
3.31.100.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7)} \, dx=\int \frac {1}{\sqrt {_{\mathrm {C4}}+_{\mathrm {C5}}\,\sqrt {\frac {_{\mathrm {C0}}+_{\mathrm {C1}}\,x}{_{\mathrm {C2}}+_{\mathrm {C3}}\,x}}}\,\left (_{\mathrm {C6}}+_{\mathrm {C7}}\,x\right )} \,d x \]

input
int(1/((_C4 + _C5*((_C0 + _C1*x)/(_C2 + _C3*x))^(1/2))^(1/2)*(_C6 + _C7*x) 
),x)
 
output
int(1/((_C4 + _C5*((_C0 + _C1*x)/(_C2 + _C3*x))^(1/2))^(1/2)*(_C6 + _C7*x) 
), x)