3.32.30 \(\int \frac {(-1+x^2) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{1+x^2} \, dx\) [3130]

3.32.30.1 Optimal result
3.32.30.2 Mathematica [A] (verified)
3.32.30.3 Rubi [F]
3.32.30.4 Maple [N/A] (verified)
3.32.30.5 Fricas [F(-1)]
3.32.30.6 Sympy [F(-1)]
3.32.30.7 Maxima [N/A]
3.32.30.8 Giac [F(-2)]
3.32.30.9 Mupad [N/A]

3.32.30.1 Optimal result

Integrand size = 44, antiderivative size = 773 \[ \int \frac {\left (-1+x^2\right ) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{1+x^2} \, dx=-\frac {\arctan \left (\frac {\sqrt {-c_3 c_4+\sqrt {c_1} \sqrt {c_3} c_5} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\sqrt {c_3} c_4-\sqrt {c_1} c_5}\right ) (-c_1 c_2+c_0 c_3) c_5 \sqrt {\sqrt {c_3} \left (-\sqrt {c_3} c_4+\sqrt {c_1} c_5\right )}}{2 \sqrt {c_1} c_3{}^{3/2} \left (-\sqrt {c_3} c_4+\sqrt {c_1} c_5\right )}-\frac {\arctan \left (\frac {\sqrt {-c_3 c_4-\sqrt {c_1} \sqrt {c_3} c_5} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\sqrt {c_3} c_4+\sqrt {c_1} c_5}\right ) (-c_1 c_2+c_0 c_3) c_5 \sqrt {-\sqrt {c_3} \left (\sqrt {c_3} c_4+\sqrt {c_1} c_5\right )}}{2 \sqrt {c_1} c_3{}^{3/2} \left (\sqrt {c_3} c_4+\sqrt {c_1} c_5\right )}-\frac {(c_1 c_2-c_0 c_3) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{c_3 \left (-c_1+\frac {(c_0+x c_1) c_3}{c_2+x c_3}\right )}+\left (-c_1 c_2 c_5{}^2+c_0 c_3 c_5{}^2\right ) \text {RootSum}\left [c_2{}^2 c_4{}^4+c_3{}^2 c_4{}^4-2 c_0 c_2 c_4{}^2 c_5{}^2-2 c_1 c_3 c_4{}^2 c_5{}^2+c_0{}^2 c_5{}^4+c_1{}^2 c_5{}^4-4 c_2{}^2 c_4{}^3 \text {$\#$1}^2-4 c_3{}^2 c_4{}^3 \text {$\#$1}^2+4 c_0 c_2 c_4 c_5{}^2 \text {$\#$1}^2+4 c_1 c_3 c_4 c_5{}^2 \text {$\#$1}^2+6 c_2{}^2 c_4{}^2 \text {$\#$1}^4+6 c_3{}^2 c_4{}^2 \text {$\#$1}^4-2 c_0 c_2 c_5{}^2 \text {$\#$1}^4-2 c_1 c_3 c_5{}^2 \text {$\#$1}^4-4 c_2{}^2 c_4 \text {$\#$1}^6-4 c_3{}^2 c_4 \text {$\#$1}^6+c_2{}^2 \text {$\#$1}^8+c_3{}^2 \text {$\#$1}^8\&,\frac {\log \left (\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}-\text {$\#$1}\right ) \text {$\#$1}}{c_2{}^2 c_4{}^2+c_3{}^2 c_4{}^2-c_0 c_2 c_5{}^2-c_1 c_3 c_5{}^2-2 c_2{}^2 c_4 \text {$\#$1}^2-2 c_3{}^2 c_4 \text {$\#$1}^2+c_2{}^2 \text {$\#$1}^4+c_3{}^2 \text {$\#$1}^4}\&\right ] \]

output
Unintegrable
 
3.32.30.2 Mathematica [A] (verified)

Time = 6.46 (sec) , antiderivative size = 656, normalized size of antiderivative = 0.85 \[ \int \frac {\left (-1+x^2\right ) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{1+x^2} \, dx=4 (c_1 c_2-c_0 c_3) c_5{}^2 \left (\frac {\arctan \left (\frac {\sqrt {c_3} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\sqrt {-c_3 c_4-\sqrt {c_1} \sqrt {c_3} c_5}}\right )}{8 \sqrt {c_1} c_3 c_5 \sqrt {-c_3 c_4-\sqrt {c_1} \sqrt {c_3} c_5}}-\frac {\arctan \left (\frac {\sqrt {c_3} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\sqrt {-c_3 c_4+\sqrt {c_1} \sqrt {c_3} c_5}}\right )}{8 \sqrt {c_1} c_3 c_5 \sqrt {-c_3 c_4+\sqrt {c_1} \sqrt {c_3} c_5}}-\frac {(c_2+x c_3) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{4 c_3 (-c_1 c_2+c_0 c_3) c_5{}^2}-\frac {1}{4} \text {RootSum}\left [c_2{}^2 c_4{}^4+c_3{}^2 c_4{}^4-2 c_0 c_2 c_4{}^2 c_5{}^2-2 c_1 c_3 c_4{}^2 c_5{}^2+c_0{}^2 c_5{}^4+c_1{}^2 c_5{}^4-4 c_2{}^2 c_4{}^3 \text {$\#$1}^2-4 c_3{}^2 c_4{}^3 \text {$\#$1}^2+4 c_0 c_2 c_4 c_5{}^2 \text {$\#$1}^2+4 c_1 c_3 c_4 c_5{}^2 \text {$\#$1}^2+6 c_2{}^2 c_4{}^2 \text {$\#$1}^4+6 c_3{}^2 c_4{}^2 \text {$\#$1}^4-2 c_0 c_2 c_5{}^2 \text {$\#$1}^4-2 c_1 c_3 c_5{}^2 \text {$\#$1}^4-4 c_2{}^2 c_4 \text {$\#$1}^6-4 c_3{}^2 c_4 \text {$\#$1}^6+c_2{}^2 \text {$\#$1}^8+c_3{}^2 \text {$\#$1}^8\&,\frac {\log \left (\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}-\text {$\#$1}\right ) \text {$\#$1}}{c_2{}^2 c_4{}^2+c_3{}^2 c_4{}^2-c_0 c_2 c_5{}^2-c_1 c_3 c_5{}^2-2 c_2{}^2 c_4 \text {$\#$1}^2-2 c_3{}^2 c_4 \text {$\#$1}^2+c_2{}^2 \text {$\#$1}^4+c_3{}^2 \text {$\#$1}^4}\&\right ]\right ) \]

input
Integrate[((-1 + x^2)*Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[ 
5]])/(1 + x^2),x]
 
output
4*(C[1]*C[2] - C[0]*C[3])*C[5]^2*(ArcTan[(Sqrt[C[3]]*Sqrt[C[4] + Sqrt[(C[0 
] + x*C[1])/(C[2] + x*C[3])]*C[5]])/Sqrt[-(C[3]*C[4]) - Sqrt[C[1]]*Sqrt[C[ 
3]]*C[5]]]/(8*Sqrt[C[1]]*C[3]*C[5]*Sqrt[-(C[3]*C[4]) - Sqrt[C[1]]*Sqrt[C[3 
]]*C[5]]) - ArcTan[(Sqrt[C[3]]*Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x* 
C[3])]*C[5]])/Sqrt[-(C[3]*C[4]) + Sqrt[C[1]]*Sqrt[C[3]]*C[5]]]/(8*Sqrt[C[1 
]]*C[3]*C[5]*Sqrt[-(C[3]*C[4]) + Sqrt[C[1]]*Sqrt[C[3]]*C[5]]) - ((C[2] + x 
*C[3])*Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5]])/(4*C[3]*(- 
(C[1]*C[2]) + C[0]*C[3])*C[5]^2) - RootSum[C[2]^2*C[4]^4 + C[3]^2*C[4]^4 - 
 2*C[0]*C[2]*C[4]^2*C[5]^2 - 2*C[1]*C[3]*C[4]^2*C[5]^2 + C[0]^2*C[5]^4 + C 
[1]^2*C[5]^4 - 4*C[2]^2*C[4]^3*#1^2 - 4*C[3]^2*C[4]^3*#1^2 + 4*C[0]*C[2]*C 
[4]*C[5]^2*#1^2 + 4*C[1]*C[3]*C[4]*C[5]^2*#1^2 + 6*C[2]^2*C[4]^2*#1^4 + 6* 
C[3]^2*C[4]^2*#1^4 - 2*C[0]*C[2]*C[5]^2*#1^4 - 2*C[1]*C[3]*C[5]^2*#1^4 - 4 
*C[2]^2*C[4]*#1^6 - 4*C[3]^2*C[4]*#1^6 + C[2]^2*#1^8 + C[3]^2*#1^8 & , (Lo 
g[Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5]] - #1]*#1)/(C[2]^ 
2*C[4]^2 + C[3]^2*C[4]^2 - C[0]*C[2]*C[5]^2 - C[1]*C[3]*C[5]^2 - 2*C[2]^2* 
C[4]*#1^2 - 2*C[3]^2*C[4]*#1^2 + C[2]^2*#1^4 + C[3]^2*#1^4) & ]/4)
 
3.32.30.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^2-1\right ) \sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}}{x^2+1} \, dx\)

\(\Big \downarrow \) 7268

\(\displaystyle 2 (c_1 c_2-c_0 c_3) \int -\frac {\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} \left (1-\frac {\left (c_0-\frac {(c_0+x c_1) c_2}{c_2+x c_3}\right ){}^2}{\left (c_1-\frac {(c_0+x c_1) c_3}{c_2+x c_3}\right ){}^2}\right ) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\left (c_1-\frac {(c_0+x c_1) c_3}{c_2+x c_3}\right ){}^2 \left (\frac {\left (c_0-\frac {(c_0+x c_1) c_2}{c_2+x c_3}\right ){}^2}{\left (c_1-\frac {(c_0+x c_1) c_3}{c_2+x c_3}\right ){}^2}+1\right )}d\sqrt {\frac {c_0+x c_1}{c_2+x c_3}}\)

\(\Big \downarrow \) 25

\(\displaystyle -2 (c_1 c_2-c_0 c_3) \int \frac {\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} \left (1-\frac {\left (c_0-\frac {(c_0+x c_1) c_2}{c_2+x c_3}\right ){}^2}{\left (c_1-\frac {(c_0+x c_1) c_3}{c_2+x c_3}\right ){}^2}\right ) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\left (c_1-\frac {(c_0+x c_1) c_3}{c_2+x c_3}\right ){}^2 \left (\frac {\left (c_0-\frac {(c_0+x c_1) c_2}{c_2+x c_3}\right ){}^2}{\left (c_1-\frac {(c_0+x c_1) c_3}{c_2+x c_3}\right ){}^2}+1\right )}d\sqrt {\frac {c_0+x c_1}{c_2+x c_3}}\)

\(\Big \downarrow \) 7267

\(\displaystyle -\frac {4 (c_1 c_2-c_0 c_3) \int \frac {(c_0+x c_1) \left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ) \left (1-\frac {\left (c_0-\frac {c_2 \left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ){}^2}{c_5{}^2}\right ){}^2}{\left (c_1-\frac {c_3 \left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ){}^2}{c_5{}^2}\right ){}^2}\right )}{(c_2+x c_3) \left (\frac {\left (c_0-\frac {c_2 \left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ){}^2}{c_5{}^2}\right ){}^2}{\left (c_1-\frac {c_3 \left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ){}^2}{c_5{}^2}\right ){}^2}+1\right ) \left (c_1-\frac {c_3 \left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ){}^2}{c_5{}^2}\right ){}^2}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{c_5{}^2}\)

\(\Big \downarrow \) 7292

\(\displaystyle -\frac {4 (c_1 c_2-c_0 c_3) \int \frac {(c_0+x c_1) \left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ) \left (1-\frac {\left (c_0-\frac {c_2 \left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ){}^2}{c_5{}^2}\right ){}^2}{\left (c_1-\frac {c_3 \left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ){}^2}{c_5{}^2}\right ){}^2}\right )}{(c_2+x c_3) \left (\frac {\left (c_0-\frac {c_2 \left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ){}^2}{c_5{}^2}\right ){}^2}{\left (c_1-\frac {c_3 \left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ){}^2}{c_5{}^2}\right ){}^2}+1\right ) \left (-\frac {c_3 (c_0+x c_1){}^2}{(c_2+x c_3){}^2 c_5{}^2}+\frac {2 c_3 c_4 (c_0+x c_1)}{(c_2+x c_3) c_5{}^2}+c_1-\frac {c_3 c_4{}^2}{c_5{}^2}\right ){}^2}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{c_5{}^2}\)

\(\Big \downarrow \) 7293

\(\displaystyle -\frac {4 (c_1 c_2-c_0 c_3) \int \left (-\frac {\left (-c_3 c_4{}^2+\frac {(c_0+x c_1) c_3 c_4}{c_2+x c_3}+c_1 c_5{}^2\right ) c_5{}^4}{c_3 \left (\frac {c_3 (c_0+x c_1){}^2}{(c_2+x c_3){}^2}-\frac {2 c_3 c_4 (c_0+x c_1)}{c_2+x c_3}+c_3 c_4{}^2-c_1 c_5{}^2\right ){}^2}-\frac {c_5{}^4}{c_3 \left (\frac {c_3 (c_0+x c_1){}^2}{(c_2+x c_3){}^2}-\frac {2 c_3 c_4 (c_0+x c_1)}{c_2+x c_3}+c_3 c_4{}^2-c_1 c_5{}^2\right )}+\frac {2 (c_0+x c_1) \left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ) c_5{}^4}{(c_2+x c_3) \left (\frac {c_2{}^2 \left (\frac {c_3{}^2}{c_2{}^2}+1\right ) (c_0+x c_1){}^4}{(c_2+x c_3){}^4}-\frac {4 c_2{}^2 \left (\frac {c_3{}^2}{c_2{}^2}+1\right ) c_4 (c_0+x c_1){}^3}{(c_2+x c_3){}^3}+\frac {6 c_2{}^2 c_4{}^2 \left (\frac {3 c_3{}^2-\frac {(c_0 c_2+c_1 c_3) c_5{}^2}{c_4{}^2}}{3 c_2{}^2}+1\right ) (c_0+x c_1){}^2}{(c_2+x c_3){}^2}-\frac {4 c_2{}^2 c_4{}^3 \left (\frac {c_3{}^2-\frac {(c_0 c_2+c_1 c_3) c_5{}^2}{c_4{}^2}}{c_2{}^2}+1\right ) (c_0+x c_1)}{c_2+x c_3}+c_2{}^2 c_4{}^4 \left (\frac {c_3{}^2+\frac {c_5{}^2 \left (-2 c_0 c_2 c_4{}^2+c_0{}^2 c_5{}^2+c_1 \left (c_1 c_5{}^2-2 c_3 c_4{}^2\right )\right )}{c_4{}^4}}{c_2{}^2}+1\right )\right )}\right )d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{c_5{}^2}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {4 (c_1 c_2-c_0 c_3) \left (2 c_4 \int \frac {c_0+x c_1}{(c_2+x c_3) \left (-\frac {c_2{}^2 \left (\frac {c_3{}^2}{c_2{}^2}+1\right ) (c_0+x c_1){}^4}{(c_2+x c_3){}^4}+\frac {4 c_2{}^2 \left (\frac {c_3{}^2}{c_2{}^2}+1\right ) c_4 (c_0+x c_1){}^3}{(c_2+x c_3){}^3}-\frac {6 c_2{}^2 c_4{}^2 \left (\frac {3 c_3{}^2-\frac {(c_0 c_2+c_1 c_3) c_5{}^2}{c_4{}^2}}{3 c_2{}^2}+1\right ) (c_0+x c_1){}^2}{(c_2+x c_3){}^2}+\frac {4 c_2{}^2 c_4{}^3 \left (\frac {c_3{}^2-\frac {(c_0 c_2+c_1 c_3) c_5{}^2}{c_4{}^2}}{c_2{}^2}+1\right ) (c_0+x c_1)}{c_2+x c_3}-c_2{}^2 c_4{}^4 \left (\frac {c_3{}^2+\frac {c_5{}^2 \left (-2 c_0 c_2 c_4{}^2+c_0{}^2 c_5{}^2+c_1 \left (c_1 c_5{}^2-2 c_3 c_4{}^2\right )\right )}{c_4{}^4}}{c_2{}^2}+1\right )\right )}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} c_5{}^4+2 \int \frac {(c_0+x c_1){}^2}{(c_2+x c_3){}^2 \left (\frac {c_2{}^2 \left (\frac {c_3{}^2}{c_2{}^2}+1\right ) (c_0+x c_1){}^4}{(c_2+x c_3){}^4}-\frac {4 c_2{}^2 \left (\frac {c_3{}^2}{c_2{}^2}+1\right ) c_4 (c_0+x c_1){}^3}{(c_2+x c_3){}^3}+\frac {6 c_2{}^2 c_4{}^2 \left (\frac {3 c_3{}^2-\frac {(c_0 c_2+c_1 c_3) c_5{}^2}{c_4{}^2}}{3 c_2{}^2}+1\right ) (c_0+x c_1){}^2}{(c_2+x c_3){}^2}-\frac {4 c_2{}^2 c_4{}^3 \left (\frac {c_3{}^2-\frac {(c_0 c_2+c_1 c_3) c_5{}^2}{c_4{}^2}}{c_2{}^2}+1\right ) (c_0+x c_1)}{c_2+x c_3}+c_2{}^2 c_4{}^4 \left (\frac {c_3{}^2+\frac {c_5{}^2 \left (-2 c_0 c_2 c_4{}^2+c_0{}^2 c_5{}^2+c_1 \left (c_1 c_5{}^2-2 c_3 c_4{}^2\right )\right )}{c_4{}^4}}{c_2{}^2}+1\right )\right )}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} c_5{}^4+\frac {\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} c_5{}^4}{4 c_3 \left (\frac {c_3 (c_0+x c_1){}^2}{(c_2+x c_3){}^2}-\frac {2 c_3 c_4 (c_0+x c_1)}{c_2+x c_3}+c_3 c_4{}^2-c_1 c_5{}^2\right )}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{c_3} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\sqrt {\sqrt {c_3} c_4-\sqrt {c_1} c_5}}\right ) c_5{}^3}{8 \sqrt {c_1} c_3{}^{5/4} \sqrt {\sqrt {c_3} c_4-\sqrt {c_1} c_5}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{c_3} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\sqrt {\sqrt {c_3} c_4+\sqrt {c_1} c_5}}\right ) c_5{}^3}{8 \sqrt {c_1} c_3{}^{5/4} \sqrt {\sqrt {c_3} c_4+\sqrt {c_1} c_5}}\right )}{c_5{}^2}\)

input
Int[((-1 + x^2)*Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5]])/( 
1 + x^2),x]
 
output
$Aborted
 

3.32.30.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7267
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfLinear[u, x]}, Si 
mp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/lst[[2]])], x 
] /;  !FalseQ[lst] && SubstForFractionalPowerQ[u, lst[[3]], x]]
 

rule 7268
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfQuotientOfLinears 
[u, x]}, Simp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/ls 
t[[2]])], x] /;  !FalseQ[lst]]
 

rule 7292
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =! 
= u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.32.30.4 Maple [N/A] (verified)

Not integrable

Time = 0.06 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.04

\[\int \frac {\left (x^{2}-1\right ) \sqrt {\textit {\_C4} +\sqrt {\frac {\textit {\_C1} x +\textit {\_C0}}{\textit {\_C3} x +\textit {\_C2}}}\, \textit {\_C5}}}{x^{2}+1}d x\]

input
int((x^2-1)*(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(x^2+1),x)
 
output
int((x^2-1)*(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(x^2+1),x)
 
3.32.30.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\left (-1+x^2\right ) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{1+x^2} \, dx=\text {Timed out} \]

input
integrate((x^2-1)*(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(x^2+1), 
x, algorithm="fricas")
 
output
Timed out
 
3.32.30.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\left (-1+x^2\right ) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{1+x^2} \, dx=\text {Timed out} \]

input
integrate((x**2-1)*(_C4+((_C1*x+_C0)/(_C3*x+_C2))**(1/2)*_C5)**(1/2)/(x**2 
+1),x)
 
output
Timed out
 
3.32.30.7 Maxima [N/A]

Not integrable

Time = 0.91 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.05 \[ \text {Unable to display latex} \]

input
integrate((x^2-1)*(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(x^2+1), 
x, algorithm="maxima")
 
output
integrate((x^2 - 1)*sqrt(_C5*sqrt((_C1*x + _C0)/(_C3*x + _C2)) + _C4)/(x^2 
 + 1), x)
 
3.32.30.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\left (-1+x^2\right ) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{1+x^2} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate((x^2-1)*(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(x^2+1), 
x, algorithm="giac")
 
output
Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:Recursive assumption sageVAR_C0>=((sageVAR_C1*sageVAR_C 
2*sageVAR_C3-sageVAR_C1*sageVAR_C3*t_nostep^2)/sageVAR_C3^2) ignoredRecurs 
ive assumpti
 
3.32.30.9 Mupad [N/A]

Not integrable

Time = 8.03 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.05 \[ \int \frac {\left (-1+x^2\right ) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{1+x^2} \, dx=\int \frac {\left (x^2-1\right )\,\sqrt {_{\mathrm {C4}}+_{\mathrm {C5}}\,\sqrt {\frac {_{\mathrm {C0}}+_{\mathrm {C1}}\,x}{_{\mathrm {C2}}+_{\mathrm {C3}}\,x}}}}{x^2+1} \,d x \]

input
int(((x^2 - 1)*(_C4 + _C5*((_C0 + _C1*x)/(_C2 + _C3*x))^(1/2))^(1/2))/(x^2 
 + 1),x)
 
output
int(((x^2 - 1)*(_C4 + _C5*((_C0 + _C1*x)/(_C2 + _C3*x))^(1/2))^(1/2))/(x^2 
 + 1), x)