3.32.37 \(\int \frac {1}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7){}^2} \, dx\) [3137]

3.32.37.1 Optimal result
3.32.37.2 Mathematica [A] (verified)
3.32.37.3 Rubi [A] (warning: unable to verify)
3.32.37.4 Maple [F]
3.32.37.5 Fricas [B] (verification not implemented)
3.32.37.6 Sympy [F(-1)]
3.32.37.7 Maxima [F(-2)]
3.32.37.8 Giac [F(-2)]
3.32.37.9 Mupad [F(-1)]

3.32.37.1 Optimal result

Integrand size = 41, antiderivative size = 884 \[ \int \frac {1}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7){}^2} \, dx=\frac {\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \left (-c_1 c_2 c_4+c_0 c_3 c_4+c_1 c_2 \sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5-c_0 c_3 \sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5\right )}{\left (c_1 c_6-\frac {(c_0+x c_1) c_3 c_6}{c_2+x c_3}-c_0 c_7+\frac {(c_0+x c_1) c_2 c_7}{c_2+x c_3}\right ) \left (-c_3 c_4{}^2 c_6+c_1 c_5{}^2 c_6+c_2 c_4{}^2 c_7-c_0 c_5{}^2 c_7\right )}+\frac {\arctan \left (\frac {\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \sqrt {c_3 c_6-c_2 c_7}}{\sqrt {-c_3 c_4 c_6+c_2 c_4 c_7-c_5 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7}}}\right ) \left (-c_1 c_2 c_5{}^2 \sqrt {c_1 c_6-c_0 c_7}+c_0 c_3 c_5{}^2 \sqrt {c_1 c_6-c_0 c_7}+c_1 c_2 c_4 c_5 \sqrt {c_3 c_6-c_2 c_7}-c_0 c_3 c_4 c_5 \sqrt {c_3 c_6-c_2 c_7}\right )}{2 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7} \left (-c_3 c_4{}^2 c_6+c_1 c_5{}^2 c_6+c_2 c_4{}^2 c_7-c_0 c_5{}^2 c_7\right ) \sqrt {-c_3 c_4 c_6+c_2 c_4 c_7-c_5 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7}}}+\frac {\arctan \left (\frac {\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \sqrt {c_3 c_6-c_2 c_7}}{\sqrt {-c_3 c_4 c_6+c_2 c_4 c_7+c_5 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7}}}\right ) \left (-c_1 c_2 c_5{}^2 \sqrt {c_1 c_6-c_0 c_7}+c_0 c_3 c_5{}^2 \sqrt {c_1 c_6-c_0 c_7}-c_1 c_2 c_4 c_5 \sqrt {c_3 c_6-c_2 c_7}+c_0 c_3 c_4 c_5 \sqrt {c_3 c_6-c_2 c_7}\right )}{2 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7} \left (-c_3 c_4{}^2 c_6+c_1 c_5{}^2 c_6+c_2 c_4{}^2 c_7-c_0 c_5{}^2 c_7\right ) \sqrt {-c_3 c_4 c_6+c_2 c_4 c_7+c_5 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7}}} \]

output
(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)*(-_C1*_C2*_C4+_C0*_C3*_C4+ 
_C1*_C2*((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5-_C0*_C3*((_C1*x+_C0)/(_C3*x+_C 
2))^(1/2)*_C5)/(_C1*_C6-(_C1*x+_C0)*_C3*_C6/(_C3*x+_C2)-_C0*_C7+(_C1*x+_C0 
)*_C2*_C7/(_C3*x+_C2))/(-_C0*_C5^2*_C7+_C1*_C5^2*_C6+_C2*_C4^2*_C7-_C3*_C4 
^2*_C6)+1/2*arctan((_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)*(-_C2*_ 
C7+_C3*_C6)^(1/2)/(-_C3*_C4*_C6+_C2*_C4*_C7-_C5*(-_C0*_C7+_C1*_C6)^(1/2)*( 
-_C2*_C7+_C3*_C6)^(1/2))^(1/2))*(-_C1*_C2*_C5^2*(-_C0*_C7+_C1*_C6)^(1/2)+_ 
C0*_C3*_C5^2*(-_C0*_C7+_C1*_C6)^(1/2)+_C1*_C2*_C4*_C5*(-_C2*_C7+_C3*_C6)^( 
1/2)-_C0*_C3*_C4*_C5*(-_C2*_C7+_C3*_C6)^(1/2))/(-_C0*_C7+_C1*_C6)^(1/2)/(- 
_C2*_C7+_C3*_C6)^(1/2)/(-_C0*_C5^2*_C7+_C1*_C5^2*_C6+_C2*_C4^2*_C7-_C3*_C4 
^2*_C6)/(-_C3*_C4*_C6+_C2*_C4*_C7-_C5*(-_C0*_C7+_C1*_C6)^(1/2)*(-_C2*_C7+_ 
C3*_C6)^(1/2))^(1/2)+1/2*arctan((_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^ 
(1/2)*(-_C2*_C7+_C3*_C6)^(1/2)/(-_C3*_C4*_C6+_C2*_C4*_C7+_C5*(-_C0*_C7+_C1 
*_C6)^(1/2)*(-_C2*_C7+_C3*_C6)^(1/2))^(1/2))*(-_C1*_C2*_C5^2*(-_C0*_C7+_C1 
*_C6)^(1/2)+_C0*_C3*_C5^2*(-_C0*_C7+_C1*_C6)^(1/2)-_C1*_C2*_C4*_C5*(-_C2*_ 
C7+_C3*_C6)^(1/2)+_C0*_C3*_C4*_C5*(-_C2*_C7+_C3*_C6)^(1/2))/(-_C0*_C7+_C1* 
_C6)^(1/2)/(-_C2*_C7+_C3*_C6)^(1/2)/(-_C0*_C5^2*_C7+_C1*_C5^2*_C6+_C2*_C4^ 
2*_C7-_C3*_C4^2*_C6)/(-_C3*_C4*_C6+_C2*_C4*_C7+_C5*(-_C0*_C7+_C1*_C6)^(1/2 
)*(-_C2*_C7+_C3*_C6)^(1/2))^(1/2)
 
3.32.37.2 Mathematica [A] (verified)

Time = 1.66 (sec) , antiderivative size = 821, normalized size of antiderivative = 0.93 \[ \int \frac {1}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7){}^2} \, dx=\frac {(c_1 c_2-c_0 c_3) \left (\frac {(c_2+x c_3) \left (c_4-\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5\right ) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_1 c_6-c_0 c_7) (-c_3 c_6+c_2 c_7)}{(c_1 c_2-c_0 c_3) (c_6+x c_7)}+c_4 c_5 \sqrt {c_1 c_6-c_0 c_7} (c_3 c_6-c_2 c_7){}^{3/4} \left (-\frac {\arctan \left (\frac {\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \sqrt [4]{c_3 c_6-c_2 c_7}}{\sqrt {c_5 \sqrt {c_1 c_6-c_0 c_7}-c_4 \sqrt {c_3 c_6-c_2 c_7}}}\right )}{\sqrt {c_5 \sqrt {c_1 c_6-c_0 c_7}-c_4 \sqrt {c_3 c_6-c_2 c_7}}}-\frac {\text {arctanh}\left (\frac {\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \sqrt [4]{c_3 c_6-c_2 c_7}}{\sqrt {c_5 \sqrt {c_1 c_6-c_0 c_7}+c_4 \sqrt {c_3 c_6-c_2 c_7}}}\right )}{\sqrt {c_5 \sqrt {c_1 c_6-c_0 c_7}+c_4 \sqrt {c_3 c_6-c_2 c_7}}}\right )-\frac {1}{2} c_5 \sqrt {c_1 c_6-c_0 c_7} \sqrt [4]{c_3 c_6-c_2 c_7} \left (\arctan \left (\frac {\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \sqrt [4]{c_3 c_6-c_2 c_7}}{\sqrt {c_5 \sqrt {c_1 c_6-c_0 c_7}-c_4 \sqrt {c_3 c_6-c_2 c_7}}}\right ) \sqrt {c_5 \sqrt {c_1 c_6-c_0 c_7}-c_4 \sqrt {c_3 c_6-c_2 c_7}}-\text {arctanh}\left (\frac {\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \sqrt [4]{c_3 c_6-c_2 c_7}}{\sqrt {c_5 \sqrt {c_1 c_6-c_0 c_7}+c_4 \sqrt {c_3 c_6-c_2 c_7}}}\right ) \sqrt {c_5 \sqrt {c_1 c_6-c_0 c_7}+c_4 \sqrt {c_3 c_6-c_2 c_7}}\right )\right )}{(-c_1 c_6+c_0 c_7) (c_3 c_6-c_2 c_7) \left (c_5{}^2 (-c_1 c_6+c_0 c_7)+c_4{}^2 (c_3 c_6-c_2 c_7)\right )} \]

input
Integrate[1/(Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5]]*(C[6] 
 + x*C[7])^2),x]
 
output
((C[1]*C[2] - C[0]*C[3])*(((C[2] + x*C[3])*(C[4] - Sqrt[(C[0] + x*C[1])/(C 
[2] + x*C[3])]*C[5])*Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5 
]]*(C[1]*C[6] - C[0]*C[7])*(-(C[3]*C[6]) + C[2]*C[7]))/((C[1]*C[2] - C[0]* 
C[3])*(C[6] + x*C[7])) + C[4]*C[5]*Sqrt[C[1]*C[6] - C[0]*C[7]]*(C[3]*C[6] 
- C[2]*C[7])^(3/4)*(-(ArcTan[(Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C 
[3])]*C[5]]*(C[3]*C[6] - C[2]*C[7])^(1/4))/Sqrt[C[5]*Sqrt[C[1]*C[6] - C[0] 
*C[7]] - C[4]*Sqrt[C[3]*C[6] - C[2]*C[7]]]]/Sqrt[C[5]*Sqrt[C[1]*C[6] - C[0 
]*C[7]] - C[4]*Sqrt[C[3]*C[6] - C[2]*C[7]]]) - ArcTanh[(Sqrt[C[4] + Sqrt[( 
C[0] + x*C[1])/(C[2] + x*C[3])]*C[5]]*(C[3]*C[6] - C[2]*C[7])^(1/4))/Sqrt[ 
C[5]*Sqrt[C[1]*C[6] - C[0]*C[7]] + C[4]*Sqrt[C[3]*C[6] - C[2]*C[7]]]]/Sqrt 
[C[5]*Sqrt[C[1]*C[6] - C[0]*C[7]] + C[4]*Sqrt[C[3]*C[6] - C[2]*C[7]]]) - ( 
C[5]*Sqrt[C[1]*C[6] - C[0]*C[7]]*(C[3]*C[6] - C[2]*C[7])^(1/4)*(ArcTan[(Sq 
rt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5]]*(C[3]*C[6] - C[2]*C[ 
7])^(1/4))/Sqrt[C[5]*Sqrt[C[1]*C[6] - C[0]*C[7]] - C[4]*Sqrt[C[3]*C[6] - C 
[2]*C[7]]]]*Sqrt[C[5]*Sqrt[C[1]*C[6] - C[0]*C[7]] - C[4]*Sqrt[C[3]*C[6] - 
C[2]*C[7]]] - ArcTanh[(Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C 
[5]]*(C[3]*C[6] - C[2]*C[7])^(1/4))/Sqrt[C[5]*Sqrt[C[1]*C[6] - C[0]*C[7]] 
+ C[4]*Sqrt[C[3]*C[6] - C[2]*C[7]]]]*Sqrt[C[5]*Sqrt[C[1]*C[6] - C[0]*C[7]] 
 + C[4]*Sqrt[C[3]*C[6] - C[2]*C[7]]]))/2))/((-(C[1]*C[6]) + C[0]*C[7])*(C[ 
3]*C[6] - C[2]*C[7])*(C[5]^2*(-(C[1]*C[6]) + C[0]*C[7]) + C[4]^2*(C[3]*...
 
3.32.37.3 Rubi [A] (warning: unable to verify)

Time = 1.44 (sec) , antiderivative size = 732, normalized size of antiderivative = 0.83, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.195, Rules used = {7268, 561, 27, 1492, 27, 27, 1480, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4} (c_7 x+c_6){}^2} \, dx\)

\(\Big \downarrow \) 7268

\(\displaystyle 2 (c_1 c_2-c_0 c_3) \int \frac {\sqrt {\frac {c_0+x c_1}{c_2+x c_3}}}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \left (c_1 c_6-c_0 c_7-\frac {(c_0+x c_1) (c_3 c_6-c_2 c_7)}{c_2+x c_3}\right ){}^2}d\sqrt {\frac {c_0+x c_1}{c_2+x c_3}}\)

\(\Big \downarrow \) 561

\(\displaystyle \frac {4 (c_1 c_2-c_0 c_3) \int \frac {\frac {c_0+x c_1}{c_2+x c_3}-c_4}{c_5 \left (-\frac {(c_3 c_6-c_2 c_7) (c_0+x c_1){}^2}{(c_2+x c_3){}^2 c_5{}^2}+\frac {2 c_4 (c_3 c_6-c_2 c_7) (c_0+x c_1)}{(c_2+x c_3) c_5{}^2}+c_1 c_6-c_0 c_7-\frac {c_4{}^2 (c_3 c_6-c_2 c_7)}{c_5{}^2}\right ){}^2}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{c_5}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {4 (c_1 c_2-c_0 c_3) \int \frac {\frac {c_0+x c_1}{c_2+x c_3}-c_4}{\left (-\frac {(c_3 c_6-c_2 c_7) (c_0+x c_1){}^2}{(c_2+x c_3){}^2 c_5{}^2}+\frac {2 c_4 (c_3 c_6-c_2 c_7) (c_0+x c_1)}{(c_2+x c_3) c_5{}^2}+c_1 c_6-c_0 c_7-\frac {c_4{}^2 (c_3 c_6-c_2 c_7)}{c_5{}^2}\right ){}^2}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{c_5{}^2}\)

\(\Big \downarrow \) 1492

\(\displaystyle \frac {4 (c_1 c_2-c_0 c_3) \left (\frac {c_5{}^4 \int -\frac {2 (c_1 c_6-c_0 c_7) \left (\frac {(c_0+x c_1) (c_3 c_6-c_2 c_7)}{c_2+x c_3}-2 c_4 (c_3 c_6-c_2 c_7)\right )}{c_5{}^2 \left (-\frac {(c_3 c_6-c_2 c_7) (c_0+x c_1){}^2}{(c_2+x c_3){}^2 c_5{}^2}+\frac {2 c_4 (c_3 c_6-c_2 c_7) (c_0+x c_1)}{(c_2+x c_3) c_5{}^2}+c_1 c_6-c_0 c_7-\frac {c_4{}^2 (c_3 c_6-c_2 c_7)}{c_5{}^2}\right )}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{8 (c_1 c_6-c_0 c_7) (c_3 c_6-c_2 c_7) \left (c_3 c_6 c_4{}^2-c_1 c_5{}^2 c_6-\left (c_2 c_4{}^2-c_0 c_5{}^2\right ) c_7\right )}-\frac {c_5{}^2 \left (\frac {c_1 x+c_0}{c_3 x+c_2}-2 c_4\right ) \sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}}{4 \left (c_3 c_6 c_4{}^2-c_1 c_5{}^2 c_6-\left (c_2 c_4{}^2-c_0 c_5{}^2\right ) c_7\right ) \left (-\frac {(c_3 c_6-c_2 c_7) (c_1 x+c_0){}^2}{c_5{}^2 (c_3 x+c_2){}^2}+\frac {2 c_4 (c_3 c_6-c_2 c_7) (c_1 x+c_0)}{c_5{}^2 (c_3 x+c_2)}+c_1 c_6-c_0 c_7-\frac {c_4{}^2 (c_3 c_6-c_2 c_7)}{c_5{}^2}\right )}\right )}{c_5{}^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {4 (c_1 c_2-c_0 c_3) \left (-\frac {c_5{}^2 \int \frac {\left (\frac {c_0+x c_1}{c_2+x c_3}-2 c_4\right ) (c_3 c_6-c_2 c_7)}{-\frac {(c_3 c_6-c_2 c_7) (c_0+x c_1){}^2}{(c_2+x c_3){}^2 c_5{}^2}+\frac {2 c_4 (c_3 c_6-c_2 c_7) (c_0+x c_1)}{(c_2+x c_3) c_5{}^2}+c_1 c_6-c_0 c_7-\frac {c_4{}^2 (c_3 c_6-c_2 c_7)}{c_5{}^2}}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{4 (c_3 c_6-c_2 c_7) \left (c_3 c_6 c_4{}^2-c_1 c_5{}^2 c_6-\left (c_2 c_4{}^2-c_0 c_5{}^2\right ) c_7\right )}-\frac {c_5{}^2 \left (\frac {c_1 x+c_0}{c_3 x+c_2}-2 c_4\right ) \sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}}{4 \left (c_3 c_6 c_4{}^2-c_1 c_5{}^2 c_6-\left (c_2 c_4{}^2-c_0 c_5{}^2\right ) c_7\right ) \left (-\frac {(c_3 c_6-c_2 c_7) (c_1 x+c_0){}^2}{c_5{}^2 (c_3 x+c_2){}^2}+\frac {2 c_4 (c_3 c_6-c_2 c_7) (c_1 x+c_0)}{c_5{}^2 (c_3 x+c_2)}+c_1 c_6-c_0 c_7-\frac {c_4{}^2 (c_3 c_6-c_2 c_7)}{c_5{}^2}\right )}\right )}{c_5{}^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {4 (c_1 c_2-c_0 c_3) \left (-\frac {c_5{}^2 \int \frac {\frac {c_0+x c_1}{c_2+x c_3}-2 c_4}{-\frac {(c_3 c_6-c_2 c_7) (c_0+x c_1){}^2}{(c_2+x c_3){}^2 c_5{}^2}+\frac {2 c_4 (c_3 c_6-c_2 c_7) (c_0+x c_1)}{(c_2+x c_3) c_5{}^2}+c_1 c_6-c_0 c_7-\frac {c_4{}^2 (c_3 c_6-c_2 c_7)}{c_5{}^2}}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{4 \left (c_3 c_6 c_4{}^2-c_1 c_5{}^2 c_6-\left (c_2 c_4{}^2-c_0 c_5{}^2\right ) c_7\right )}-\frac {c_5{}^2 \left (\frac {c_1 x+c_0}{c_3 x+c_2}-2 c_4\right ) \sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}}{4 \left (c_3 c_6 c_4{}^2-c_1 c_5{}^2 c_6-\left (c_2 c_4{}^2-c_0 c_5{}^2\right ) c_7\right ) \left (-\frac {(c_3 c_6-c_2 c_7) (c_1 x+c_0){}^2}{c_5{}^2 (c_3 x+c_2){}^2}+\frac {2 c_4 (c_3 c_6-c_2 c_7) (c_1 x+c_0)}{c_5{}^2 (c_3 x+c_2)}+c_1 c_6-c_0 c_7-\frac {c_4{}^2 (c_3 c_6-c_2 c_7)}{c_5{}^2}\right )}\right )}{c_5{}^2}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {4 (c_1 c_2-c_0 c_3) \left (-\frac {c_5{}^2 \left (\frac {1}{2} \left (1+\frac {\sqrt {c_3 c_6-c_2 c_7} c_4}{c_5 \sqrt {c_1 c_6-c_0 c_7}}\right ) \int \frac {1}{\frac {-\sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7} c_5+c_3 c_4 c_6-c_2 c_4 c_7}{c_5{}^2}-\frac {(c_0+x c_1) (c_3 c_6-c_2 c_7)}{(c_2+x c_3) c_5{}^2}}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}+\frac {1}{2} \left (1-\frac {c_4 \sqrt {c_3 c_6-c_2 c_7}}{c_5 \sqrt {c_1 c_6-c_0 c_7}}\right ) \int \frac {1}{\frac {\sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7} c_5+c_3 c_4 c_6-c_2 c_4 c_7}{c_5{}^2}-\frac {(c_0+x c_1) (c_3 c_6-c_2 c_7)}{(c_2+x c_3) c_5{}^2}}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}\right )}{4 \left (c_3 c_6 c_4{}^2-c_1 c_5{}^2 c_6-\left (c_2 c_4{}^2-c_0 c_5{}^2\right ) c_7\right )}-\frac {c_5{}^2 \left (\frac {c_1 x+c_0}{c_3 x+c_2}-2 c_4\right ) \sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}}{4 \left (c_3 c_6 c_4{}^2-c_1 c_5{}^2 c_6-\left (c_2 c_4{}^2-c_0 c_5{}^2\right ) c_7\right ) \left (-\frac {(c_3 c_6-c_2 c_7) (c_1 x+c_0){}^2}{c_5{}^2 (c_3 x+c_2){}^2}+\frac {2 c_4 (c_3 c_6-c_2 c_7) (c_1 x+c_0)}{c_5{}^2 (c_3 x+c_2)}+c_1 c_6-c_0 c_7-\frac {c_4{}^2 (c_3 c_6-c_2 c_7)}{c_5{}^2}\right )}\right )}{c_5{}^2}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {4 (c_1 c_2-c_0 c_3) \left (-\frac {c_5{}^2 \left (\frac {\left (1+\frac {\sqrt {c_3 c_6-c_2 c_7} c_4}{c_5 \sqrt {c_1 c_6-c_0 c_7}}\right ) c_5{}^2 \text {arctanh}\left (\frac {\sqrt {c_3 c_6-c_2 c_7} \sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}}{\sqrt {-\sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7} c_5+c_3 c_4 c_6-c_2 c_4 c_7}}\right )}{2 \sqrt {c_3 c_6-c_2 c_7} \sqrt {-\sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7} c_5+c_3 c_4 c_6-c_2 c_4 c_7}}+\frac {\left (1-\frac {c_4 \sqrt {c_3 c_6-c_2 c_7}}{c_5 \sqrt {c_1 c_6-c_0 c_7}}\right ) c_5{}^2 \text {arctanh}\left (\frac {\sqrt {c_3 c_6-c_2 c_7} \sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}}{\sqrt {\sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7} c_5+c_3 c_4 c_6-c_2 c_4 c_7}}\right )}{2 \sqrt {c_3 c_6-c_2 c_7} \sqrt {\sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7} c_5+c_3 c_4 c_6-c_2 c_4 c_7}}\right )}{4 \left (c_3 c_6 c_4{}^2-c_1 c_5{}^2 c_6-\left (c_2 c_4{}^2-c_0 c_5{}^2\right ) c_7\right )}-\frac {c_5{}^2 \left (\frac {c_1 x+c_0}{c_3 x+c_2}-2 c_4\right ) \sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}}{4 \left (c_3 c_6 c_4{}^2-c_1 c_5{}^2 c_6-\left (c_2 c_4{}^2-c_0 c_5{}^2\right ) c_7\right ) \left (-\frac {(c_3 c_6-c_2 c_7) (c_1 x+c_0){}^2}{c_5{}^2 (c_3 x+c_2){}^2}+\frac {2 c_4 (c_3 c_6-c_2 c_7) (c_1 x+c_0)}{c_5{}^2 (c_3 x+c_2)}+c_1 c_6-c_0 c_7-\frac {c_4{}^2 (c_3 c_6-c_2 c_7)}{c_5{}^2}\right )}\right )}{c_5{}^2}\)

input
Int[1/(Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5]]*(C[6] + x*C 
[7])^2),x]
 
output
(4*(C[1]*C[2] - C[0]*C[3])*(-1/4*(((C[0] + x*C[1])/(C[2] + x*C[3]) - 2*C[4 
])*C[5]^2*Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5]])/((C[3]* 
C[4]^2*C[6] - C[1]*C[5]^2*C[6] - (C[2]*C[4]^2 - C[0]*C[5]^2)*C[7])*(C[1]*C 
[6] - C[0]*C[7] - ((C[0] + x*C[1])^2*(C[3]*C[6] - C[2]*C[7]))/((C[2] + x*C 
[3])^2*C[5]^2) + (2*(C[0] + x*C[1])*C[4]*(C[3]*C[6] - C[2]*C[7]))/((C[2] + 
 x*C[3])*C[5]^2) - (C[4]^2*(C[3]*C[6] - C[2]*C[7]))/C[5]^2)) - (C[5]^2*((A 
rcTanh[(Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5]]*Sqrt[C[3]* 
C[6] - C[2]*C[7]])/Sqrt[C[3]*C[4]*C[6] - C[2]*C[4]*C[7] - C[5]*Sqrt[C[1]*C 
[6] - C[0]*C[7]]*Sqrt[C[3]*C[6] - C[2]*C[7]]]]*C[5]^2*(1 + (C[4]*Sqrt[C[3] 
*C[6] - C[2]*C[7]])/(C[5]*Sqrt[C[1]*C[6] - C[0]*C[7]])))/(2*Sqrt[C[3]*C[6] 
 - C[2]*C[7]]*Sqrt[C[3]*C[4]*C[6] - C[2]*C[4]*C[7] - C[5]*Sqrt[C[1]*C[6] - 
 C[0]*C[7]]*Sqrt[C[3]*C[6] - C[2]*C[7]]]) + (ArcTanh[(Sqrt[C[4] + Sqrt[(C[ 
0] + x*C[1])/(C[2] + x*C[3])]*C[5]]*Sqrt[C[3]*C[6] - C[2]*C[7]])/Sqrt[C[3] 
*C[4]*C[6] - C[2]*C[4]*C[7] + C[5]*Sqrt[C[1]*C[6] - C[0]*C[7]]*Sqrt[C[3]*C 
[6] - C[2]*C[7]]]]*C[5]^2*(1 - (C[4]*Sqrt[C[3]*C[6] - C[2]*C[7]])/(C[5]*Sq 
rt[C[1]*C[6] - C[0]*C[7]])))/(2*Sqrt[C[3]*C[6] - C[2]*C[7]]*Sqrt[C[3]*C[4] 
*C[6] - C[2]*C[4]*C[7] + C[5]*Sqrt[C[1]*C[6] - C[0]*C[7]]*Sqrt[C[3]*C[6] - 
 C[2]*C[7]]])))/(4*(C[3]*C[4]^2*C[6] - C[1]*C[5]^2*C[6] - (C[2]*C[4]^2 - C 
[0]*C[5]^2)*C[7]))))/C[5]^2
 

3.32.37.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 561
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbo 
l] :> With[{k = Denominator[n]}, Simp[k/d   Subst[Int[x^(k*(n + 1) - 1)*(-c 
/d + x^k/d)^m*Simp[(b*c^2 + a*d^2)/d^2 - 2*b*c*(x^k/d^2) + b*(x^(2*k)/d^2), 
 x]^p, x], x, (c + d*x)^(1/k)], x]] /; FreeQ[{a, b, c, d, m, p}, x] && Frac 
tionQ[n] && IntegerQ[p] && IntegerQ[m]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1492
Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symb 
ol] :> Simp[x*(a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2)*((a + b*x^2 + 
 c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 
 - 4*a*c))   Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 
7)*(d*b - 2*a*e)*c*x^2, x]*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, 
 b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && 
 LtQ[p, -1] && IntegerQ[2*p]
 

rule 7268
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfQuotientOfLinears 
[u, x]}, Simp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/ls 
t[[2]])], x] /;  !FalseQ[lst]]
 
3.32.37.4 Maple [F]

\[\int \frac {1}{\sqrt {\textit {\_C4} +\sqrt {\frac {\textit {\_C1} x +\textit {\_C0}}{\textit {\_C3} x +\textit {\_C2}}}\, \textit {\_C5}}\, \left (\textit {\_C7} x +\textit {\_C6} \right )^{2}}d x\]

input
int(1/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(_C7*x+_C6)^2,x)
 
output
int(1/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(_C7*x+_C6)^2,x)
 
3.32.37.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 56059 vs. \(2 (579) = 1158\).

Time = 45.16 (sec) , antiderivative size = 56059, normalized size of antiderivative = 63.42 \[ \int \frac {1}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7){}^2} \, dx=\text {Too large to display} \]

input
integrate(1/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(_C7*x+_C6)^2, 
x, algorithm="fricas")
 
output
Too large to include
 
3.32.37.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7){}^2} \, dx=\text {Timed out} \]

input
integrate(1/(_C4+((_C1*x+_C0)/(_C3*x+_C2))**(1/2)*_C5)**(1/2)/(_C7*x+_C6)* 
*2,x)
 
output
Timed out
 
3.32.37.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7){}^2} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate(1/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(_C7*x+_C6)^2, 
x, algorithm="maxima")
 
output
Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 
3.32.37.8 Giac [F(-2)]

Exception generated. \[ \int \frac {1}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7){}^2} \, dx=\text {Exception raised: TypeError} \]

input
integrate(1/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(_C7*x+_C6)^2, 
x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(con 
st gen &
 
3.32.37.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7){}^2} \, dx=\int \frac {1}{\sqrt {_{\mathrm {C4}}+_{\mathrm {C5}}\,\sqrt {\frac {_{\mathrm {C0}}+_{\mathrm {C1}}\,x}{_{\mathrm {C2}}+_{\mathrm {C3}}\,x}}}\,{\left (_{\mathrm {C6}}+_{\mathrm {C7}}\,x\right )}^2} \,d x \]

input
int(1/((_C4 + _C5*((_C0 + _C1*x)/(_C2 + _C3*x))^(1/2))^(1/2)*(_C6 + _C7*x) 
^2),x)
 
output
int(1/((_C4 + _C5*((_C0 + _C1*x)/(_C2 + _C3*x))^(1/2))^(1/2)*(_C6 + _C7*x) 
^2), x)