3.32.40 \(\int \frac {c_6+x c_7}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}} \, dx\) [3140]

3.32.40.1 Optimal result
3.32.40.2 Mathematica [A] (verified)
3.32.40.3 Rubi [A] (verified)
3.32.40.4 Maple [F]
3.32.40.5 Fricas [F(-1)]
3.32.40.6 Sympy [F]
3.32.40.7 Maxima [F]
3.32.40.8 Giac [F(-2)]
3.32.40.9 Mupad [F(-1)]

3.32.40.1 Optimal result

Integrand size = 39, antiderivative size = 1178 \[ \int \frac {c_6+x c_7}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}} \, dx=-\frac {\text {arctanh}\left (\frac {\sqrt [4]{c_3} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\sqrt {\sqrt {c_3} c_4+\sqrt {c_1} c_5}}\right ) \left (-8 c_1{}^2 c_2 c_3{}^{3/2} c_4 c_5 c_6+8 c_0 c_1 c_3{}^{5/2} c_4 c_5 c_6-8 c_1{}^{5/2} c_2 c_3 c_5{}^2 c_6+8 c_0 c_1{}^{3/2} c_3{}^2 c_5{}^2 c_6+6 c_1{}^2 c_2{}^2 \sqrt {c_3} c_4 c_5 c_7-4 c_0 c_1 c_2 c_3{}^{3/2} c_4 c_5 c_7-2 c_0{}^2 c_3{}^{5/2} c_4 c_5 c_7+3 c_1{}^{5/2} c_2{}^2 c_5{}^2 c_7+2 c_0 c_1{}^{3/2} c_2 c_3 c_5{}^2 c_7-5 c_0{}^2 \sqrt {c_1} c_3{}^2 c_5{}^2 c_7\right )}{16 c_1{}^{3/2} c_3{}^{7/4} \left (\sqrt {c_3} c_4+\sqrt {c_1} c_5\right ){}^{5/2}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{c_3} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\sqrt {\sqrt {c_3} c_4-\sqrt {c_1} c_5}}\right ) \sqrt {\sqrt {c_3} c_4-\sqrt {c_1} c_5} \left (-8 c_1{}^2 c_2 c_3{}^{3/2} c_4 c_5 c_6+8 c_0 c_1 c_3{}^{5/2} c_4 c_5 c_6+8 c_1{}^{5/2} c_2 c_3 c_5{}^2 c_6-8 c_0 c_1{}^{3/2} c_3{}^2 c_5{}^2 c_6+6 c_1{}^2 c_2{}^2 \sqrt {c_3} c_4 c_5 c_7-4 c_0 c_1 c_2 c_3{}^{3/2} c_4 c_5 c_7-2 c_0{}^2 c_3{}^{5/2} c_4 c_5 c_7-3 c_1{}^{5/2} c_2{}^2 c_5{}^2 c_7-2 c_0 c_1{}^{3/2} c_2 c_3 c_5{}^2 c_7+5 c_0{}^2 \sqrt {c_1} c_3{}^2 c_5{}^2 c_7\right )}{16 c_1{}^{3/2} c_3{}^{7/4} \left (-\sqrt {c_3} c_4+\sqrt {c_1} c_5\right ){}^3}+\frac {\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \left (4 c_2 c_3{}^2 c_4{}^3 c_6+4 x c_3{}^3 c_4{}^3 c_6-4 c_1 c_2 c_3 c_4 c_5{}^2 c_6-4 x c_1 c_3{}^2 c_4 c_5{}^2 c_6-2 c_2{}^2 c_3 c_4{}^3 c_7+2 x^2 c_3{}^3 c_4{}^3 c_7-c_1 c_2{}^2 c_4 c_5{}^2 c_7+3 c_0 c_2 c_3 c_4 c_5{}^2 c_7-3 x c_1 c_2 c_3 c_4 c_5{}^2 c_7+3 x c_0 c_3{}^2 c_4 c_5{}^2 c_7-2 x^2 c_1 c_3{}^2 c_4 c_5{}^2 c_7\right )}{4 c_3 \left (c_3 c_4{}^2-c_1 c_5{}^2\right ){}^2}+\frac {\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \left (-8 c_1 c_2 c_3{}^2 c_4{}^2 c_5 c_6-8 x c_1 c_3{}^3 c_4{}^2 c_5 c_6+8 c_1{}^2 c_2 c_3 c_5{}^3 c_6+8 x c_1{}^2 c_3{}^2 c_5{}^3 c_6+5 c_1 c_2{}^2 c_3 c_4{}^2 c_5 c_7-c_0 c_2 c_3{}^2 c_4{}^2 c_5 c_7+x c_1 c_2 c_3{}^2 c_4{}^2 c_5 c_7-x c_0 c_3{}^3 c_4{}^2 c_5 c_7-4 x^2 c_1 c_3{}^3 c_4{}^2 c_5 c_7+c_1{}^2 c_2{}^2 c_5{}^3 c_7-5 c_0 c_1 c_2 c_3 c_5{}^3 c_7+5 x c_1{}^2 c_2 c_3 c_5{}^3 c_7-5 x c_0 c_1 c_3{}^2 c_5{}^3 c_7+4 x^2 c_1{}^2 c_3{}^2 c_5{}^3 c_7\right )}{8 c_1 c_3 \left (c_3 c_4{}^2-c_1 c_5{}^2\right ){}^2} \]

output
-1/16*arctanh(_C3^(1/4)*(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(_ 
C3^(1/2)*_C4+_C1^(1/2)*_C5)^(1/2))*(-8*_C1^2*_C2*_C3^(3/2)*_C4*_C5*_C6+8*_ 
C0*_C1*_C3^(5/2)*_C4*_C5*_C6-8*_C1^(5/2)*_C2*_C3*_C5^2*_C6+8*_C0*_C1^(3/2) 
*_C3^2*_C5^2*_C6+6*_C1^2*_C2^2*_C3^(1/2)*_C4*_C5*_C7-4*_C0*_C1*_C2*_C3^(3/ 
2)*_C4*_C5*_C7-2*_C0^2*_C3^(5/2)*_C4*_C5*_C7+3*_C1^(5/2)*_C2^2*_C5^2*_C7+2 
*_C0*_C1^(3/2)*_C2*_C3*_C5^2*_C7-5*_C0^2*_C1^(1/2)*_C3^2*_C5^2*_C7)/_C1^(3 
/2)/_C3^(7/4)/(_C3^(1/2)*_C4+_C1^(1/2)*_C5)^(5/2)-1/16*arctanh(_C3^(1/4)*( 
_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(_C3^(1/2)*_C4-_C1^(1/2)*_C 
5)^(1/2))*(_C3^(1/2)*_C4-_C1^(1/2)*_C5)^(1/2)*(-8*_C1^2*_C2*_C3^(3/2)*_C4* 
_C5*_C6+8*_C0*_C1*_C3^(5/2)*_C4*_C5*_C6+8*_C1^(5/2)*_C2*_C3*_C5^2*_C6-8*_C 
0*_C1^(3/2)*_C3^2*_C5^2*_C6+6*_C1^2*_C2^2*_C3^(1/2)*_C4*_C5*_C7-4*_C0*_C1* 
_C2*_C3^(3/2)*_C4*_C5*_C7-2*_C0^2*_C3^(5/2)*_C4*_C5*_C7-3*_C1^(5/2)*_C2^2* 
_C5^2*_C7-2*_C0*_C1^(3/2)*_C2*_C3*_C5^2*_C7+5*_C0^2*_C1^(1/2)*_C3^2*_C5^2* 
_C7)/_C1^(3/2)/_C3^(7/4)/(-_C3^(1/2)*_C4+_C1^(1/2)*_C5)^3+1/4*(_C4+((_C1*x 
+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)*(-2*_C1*_C3^2*_C4*_C5^2*_C7*x^2+2*_C3^ 
3*_C4^3*_C7*x^2+3*_C0*_C3^2*_C4*_C5^2*_C7*x-3*_C1*_C2*_C3*_C4*_C5^2*_C7*x- 
4*_C1*_C3^2*_C4*_C5^2*_C6*x+4*_C3^3*_C4^3*_C6*x+3*_C0*_C2*_C3*_C4*_C5^2*_C 
7-_C1*_C2^2*_C4*_C5^2*_C7-4*_C1*_C2*_C3*_C4*_C5^2*_C6-2*_C2^2*_C3*_C4^3*_C 
7+4*_C2*_C3^2*_C4^3*_C6)/_C3/(-_C1*_C5^2+_C3*_C4^2)^2+1/8*((_C1*x+_C0)/(_C 
3*x+_C2))^(1/2)*(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)*(4*_C1^...
 
3.32.40.2 Mathematica [A] (verified)

Time = 6.26 (sec) , antiderivative size = 1140, normalized size of antiderivative = 0.97 \[ \int \frac {c_6+x c_7}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}} \, dx=-\frac {1}{16} (c_1 c_2-c_0 c_3) \left (\frac {8 (c_2+x c_3){}^2 \left (c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5\right ){}^{5/2} \left (c_3 c_4{}^2 \left (c_4-3 \sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5\right )+c_1 c_5{}^2 \left (3 c_4-\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5\right )\right ) c_7}{(c_1 c_2-c_0 c_3) \left (-c_3 c_4{}^2+c_1 c_5{}^2\right ){}^3}+\frac {\arctan \left (\frac {\sqrt {c_3 c_4{}^2-c_1 c_5{}^2}}{\sqrt {-c_3 c_4+\sqrt {c_1} \sqrt {c_3} c_5} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}\right ) c_5 \left (\sqrt {c_3} c_4-\sqrt {c_1} c_5\right ) \left (-2 c_0 c_3{}^{3/2} c_4 c_7-5 c_0 \sqrt {c_1} c_3 c_5 c_7+2 c_1 \sqrt {c_3} c_4 (4 c_3 c_6-3 c_2 c_7)+c_1{}^{3/2} c_5 (8 c_3 c_6-3 c_2 c_7)\right )}{c_1{}^{3/2} c_3{}^{3/2} \left (\sqrt {c_3} c_4+\sqrt {c_1} c_5\right ){}^2 \sqrt {-c_3 c_4+\sqrt {c_1} \sqrt {c_3} c_5} \sqrt {c_3 c_4{}^2-c_1 c_5{}^2}}+\frac {\arctan \left (\frac {\sqrt {c_3 c_4{}^2-c_1 c_5{}^2}}{\sqrt {-c_3 c_4-\sqrt {c_1} \sqrt {c_3} c_5} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}\right ) c_5 \left (\sqrt {c_3} c_4+\sqrt {c_1} c_5\right ) \left (2 c_0 c_3{}^{3/2} c_4 c_7-5 c_0 \sqrt {c_1} c_3 c_5 c_7+c_1{}^{3/2} c_5 (8 c_3 c_6-3 c_2 c_7)+2 c_1 \sqrt {c_3} c_4 (-4 c_3 c_6+3 c_2 c_7)\right )}{c_1{}^{3/2} c_3{}^{3/2} \left (\sqrt {c_3} c_4-\sqrt {c_1} c_5\right ){}^2 \sqrt {-c_3 c_4-\sqrt {c_1} \sqrt {c_3} c_5} \sqrt {c_3 c_4{}^2-c_1 c_5{}^2}}-\frac {2 (c_2+x c_3) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \left (c_0 c_3{}^3 \sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_4{}^4 c_5 c_7+c_1{}^3 c_5{}^4 \left (-8 c_3 \left (c_4-\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5\right ) c_6+c_2 \left (-2 c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5\right ) c_7\right )-c_1 c_3{}^2 c_4{}^2 \left (8 c_3 c_4{}^2 \left (c_4-\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5\right ) c_6+\left (2 c_0 c_5{}^2 \left (13 c_4+4 \sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5\right )+c_2 c_4{}^2 \left (-8 c_4+9 \sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5\right )\right ) c_7\right )+c_1{}^2 c_3 c_5{}^2 \left (16 c_3 c_4{}^2 \left (c_4-\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5\right ) c_6+\left (c_0 c_5{}^2 \left (10 c_4-9 \sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5\right )+2 c_2 c_4{}^2 \left (5 c_4+12 \sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5\right )\right ) c_7\right )\right )}{c_1 c_3 (c_1 c_2-c_0 c_3) \left (-c_3 c_4{}^2+c_1 c_5{}^2\right ){}^3}\right ) \]

input
Integrate[(C[6] + x*C[7])/Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3]) 
]*C[5]],x]
 
output
-1/16*((C[1]*C[2] - C[0]*C[3])*((8*(C[2] + x*C[3])^2*(C[4] + Sqrt[(C[0] + 
x*C[1])/(C[2] + x*C[3])]*C[5])^(5/2)*(C[3]*C[4]^2*(C[4] - 3*Sqrt[(C[0] + x 
*C[1])/(C[2] + x*C[3])]*C[5]) + C[1]*C[5]^2*(3*C[4] - Sqrt[(C[0] + x*C[1]) 
/(C[2] + x*C[3])]*C[5]))*C[7])/((C[1]*C[2] - C[0]*C[3])*(-(C[3]*C[4]^2) + 
C[1]*C[5]^2)^3) + (ArcTan[Sqrt[C[3]*C[4]^2 - C[1]*C[5]^2]/(Sqrt[-(C[3]*C[4 
]) + Sqrt[C[1]]*Sqrt[C[3]]*C[5]]*Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + 
x*C[3])]*C[5]])]*C[5]*(Sqrt[C[3]]*C[4] - Sqrt[C[1]]*C[5])*(-2*C[0]*C[3]^(3 
/2)*C[4]*C[7] - 5*C[0]*Sqrt[C[1]]*C[3]*C[5]*C[7] + 2*C[1]*Sqrt[C[3]]*C[4]* 
(4*C[3]*C[6] - 3*C[2]*C[7]) + C[1]^(3/2)*C[5]*(8*C[3]*C[6] - 3*C[2]*C[7])) 
)/(C[1]^(3/2)*C[3]^(3/2)*(Sqrt[C[3]]*C[4] + Sqrt[C[1]]*C[5])^2*Sqrt[-(C[3] 
*C[4]) + Sqrt[C[1]]*Sqrt[C[3]]*C[5]]*Sqrt[C[3]*C[4]^2 - C[1]*C[5]^2]) + (A 
rcTan[Sqrt[C[3]*C[4]^2 - C[1]*C[5]^2]/(Sqrt[-(C[3]*C[4]) - Sqrt[C[1]]*Sqrt 
[C[3]]*C[5]]*Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5]])]*C[5 
]*(Sqrt[C[3]]*C[4] + Sqrt[C[1]]*C[5])*(2*C[0]*C[3]^(3/2)*C[4]*C[7] - 5*C[0 
]*Sqrt[C[1]]*C[3]*C[5]*C[7] + C[1]^(3/2)*C[5]*(8*C[3]*C[6] - 3*C[2]*C[7]) 
+ 2*C[1]*Sqrt[C[3]]*C[4]*(-4*C[3]*C[6] + 3*C[2]*C[7])))/(C[1]^(3/2)*C[3]^( 
3/2)*(Sqrt[C[3]]*C[4] - Sqrt[C[1]]*C[5])^2*Sqrt[-(C[3]*C[4]) - Sqrt[C[1]]* 
Sqrt[C[3]]*C[5]]*Sqrt[C[3]*C[4]^2 - C[1]*C[5]^2]) - (2*(C[2] + x*C[3])*Sqr 
t[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5]]*(C[0]*C[3]^3*Sqrt[(C[ 
0] + x*C[1])/(C[2] + x*C[3])]*C[4]^4*C[5]*C[7] + C[1]^3*C[5]^4*(-8*C[3]...
 
3.32.40.3 Rubi [A] (verified)

Time = 1.54 (sec) , antiderivative size = 856, normalized size of antiderivative = 0.73, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.256, Rules used = {7268, 2180, 27, 686, 27, 654, 25, 27, 1480, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c_7 x+c_6}{\sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}} \, dx\)

\(\Big \downarrow \) 7268

\(\displaystyle 2 (c_1 c_2-c_0 c_3) \int \frac {\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} \left (c_1 c_6-c_0 c_7-\frac {(c_0+x c_1) (c_3 c_6-c_2 c_7)}{c_2+x c_3}\right )}{\left (c_1-\frac {(c_0+x c_1) c_3}{c_2+x c_3}\right ){}^3 \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}d\sqrt {\frac {c_0+x c_1}{c_2+x c_3}}\)

\(\Big \downarrow \) 2180

\(\displaystyle 2 (c_1 c_2-c_0 c_3) \left (\frac {\int -\frac {c_1 \left (\left (c_0-\frac {c_1 c_2}{c_3}\right ) c_4 c_5 c_7-\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} \left (5 \left (c_0-\frac {c_1 c_2}{c_3}\right ) c_7 c_5{}^2+8 \left (c_3 c_4{}^2-c_1 c_5{}^2\right ) \left (c_6-\frac {c_2 c_7}{c_3}\right )\right )\right )}{2 \left (c_1-\frac {(c_0+x c_1) c_3}{c_2+x c_3}\right ){}^2 \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}d\sqrt {\frac {c_0+x c_1}{c_2+x c_3}}}{4 c_1 \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}-\frac {\left (c_0-\frac {c_1 c_2}{c_3}\right ) c_7 \left (c_4-c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}\right ) \sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}}{4 \left (c_3 c_4{}^2-c_1 c_5{}^2\right ) \left (c_1-\frac {c_3 (c_1 x+c_0)}{c_3 x+c_2}\right ){}^2}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 (c_1 c_2-c_0 c_3) \left (-\frac {\int \frac {\left (c_0-\frac {c_1 c_2}{c_3}\right ) c_4 c_5 c_7-\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} \left (5 \left (c_0-\frac {c_1 c_2}{c_3}\right ) c_7 c_5{}^2+8 \left (c_3 c_4{}^2-c_1 c_5{}^2\right ) \left (c_6-\frac {c_2 c_7}{c_3}\right )\right )}{\left (c_1-\frac {(c_0+x c_1) c_3}{c_2+x c_3}\right ){}^2 \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}d\sqrt {\frac {c_0+x c_1}{c_2+x c_3}}}{8 \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}-\frac {\left (c_0-\frac {c_1 c_2}{c_3}\right ) c_7 \left (c_4-c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}\right ) \sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}}{4 \left (c_3 c_4{}^2-c_1 c_5{}^2\right ) \left (c_1-\frac {c_3 (c_1 x+c_0)}{c_3 x+c_2}\right ){}^2}\right )\)

\(\Big \downarrow \) 686

\(\displaystyle 2 (c_1 c_2-c_0 c_3) \left (-\frac {\frac {\sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4} \left (c_5 \left (c_0 c_3{}^2 c_7 c_4{}^2-c_1{}^2 c_5{}^2 (8 c_3 c_6-3 c_2 c_7)+c_1 c_3 \left (8 c_3 c_4{}^2 c_6-\left (9 c_2 c_4{}^2-5 c_0 c_5{}^2\right ) c_7\right )\right ) \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}-2 c_1 c_4 \left (4 c_3{}^2 c_6 c_4{}^2+c_1 c_2 c_5{}^2 c_7-c_3 \left (4 c_1 c_6 c_5{}^2+\left (4 c_2 c_4{}^2-3 c_0 c_5{}^2\right ) c_7\right )\right )\right )}{2 c_1 c_3 \left (c_3 c_4{}^2-c_1 c_5{}^2\right ) \left (c_1-\frac {c_3 (c_1 x+c_0)}{c_3 x+c_2}\right )}-\frac {\int -\frac {c_5 \left (\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5 \left (c_0 c_3{}^2 c_7 c_4{}^2-c_1{}^2 c_5{}^2 (8 c_3 c_6-3 c_2 c_7)+c_1 c_3 \left (8 c_3 c_4{}^2 c_6-\left (9 c_2 c_4{}^2-5 c_0 c_5{}^2\right ) c_7\right )\right )+2 c_3 c_4 \left (c_0 c_3 c_7 c_4{}^2+4 c_1{}^2 c_5{}^2 c_6-c_1 \left (4 c_3 c_4{}^2 c_6-\left (3 c_2 c_4{}^2-4 c_0 c_5{}^2\right ) c_7\right )\right )\right )}{2 \left (c_1-\frac {(c_0+x c_1) c_3}{c_2+x c_3}\right ) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}d\sqrt {\frac {c_0+x c_1}{c_2+x c_3}}}{2 c_1 c_3 \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}}{8 \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}-\frac {\left (c_0-\frac {c_1 c_2}{c_3}\right ) c_7 \left (c_4-c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}\right ) \sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}}{4 \left (c_3 c_4{}^2-c_1 c_5{}^2\right ) \left (c_1-\frac {c_3 (c_1 x+c_0)}{c_3 x+c_2}\right ){}^2}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 (c_1 c_2-c_0 c_3) \left (-\frac {\frac {c_5 \int \frac {\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5 \left (c_0 c_3{}^2 c_7 c_4{}^2-c_1{}^2 c_5{}^2 (8 c_3 c_6-3 c_2 c_7)+c_1 c_3 \left (8 c_3 c_4{}^2 c_6-\left (9 c_2 c_4{}^2-5 c_0 c_5{}^2\right ) c_7\right )\right )+2 c_3 c_4 \left (c_0 c_3 c_7 c_4{}^2+4 c_1{}^2 c_5{}^2 c_6-c_1 \left (4 c_3 c_4{}^2 c_6-\left (3 c_2 c_4{}^2-4 c_0 c_5{}^2\right ) c_7\right )\right )}{\left (c_1-\frac {(c_0+x c_1) c_3}{c_2+x c_3}\right ) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}d\sqrt {\frac {c_0+x c_1}{c_2+x c_3}}}{4 c_1 c_3 \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}+\frac {\sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4} \left (c_5 \left (c_0 c_3{}^2 c_7 c_4{}^2-c_1{}^2 c_5{}^2 (8 c_3 c_6-3 c_2 c_7)+c_1 c_3 \left (8 c_3 c_4{}^2 c_6-\left (9 c_2 c_4{}^2-5 c_0 c_5{}^2\right ) c_7\right )\right ) \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}-2 c_1 c_4 \left (4 c_3{}^2 c_6 c_4{}^2+c_1 c_2 c_5{}^2 c_7-c_3 \left (4 c_1 c_6 c_5{}^2+\left (4 c_2 c_4{}^2-3 c_0 c_5{}^2\right ) c_7\right )\right )\right )}{2 c_1 c_3 \left (c_3 c_4{}^2-c_1 c_5{}^2\right ) \left (c_1-\frac {c_3 (c_1 x+c_0)}{c_3 x+c_2}\right )}}{8 \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}-\frac {\left (c_0-\frac {c_1 c_2}{c_3}\right ) c_7 \left (c_4-c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}\right ) \sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}}{4 \left (c_3 c_4{}^2-c_1 c_5{}^2\right ) \left (c_1-\frac {c_3 (c_1 x+c_0)}{c_3 x+c_2}\right ){}^2}\right )\)

\(\Big \downarrow \) 654

\(\displaystyle 2 (c_1 c_2-c_0 c_3) \left (-\frac {\frac {c_5 \int -\frac {c_5 \left (c_4 \left (c_0 c_3{}^2 c_7 c_4{}^2+c_1{}^2 c_5{}^2 (16 c_3 c_6-3 c_2 c_7)-c_1 c_3 \left (16 c_3 c_4{}^2 c_6-\left (15 c_2 c_4{}^2-13 c_0 c_5{}^2\right ) c_7\right )\right )+\frac {(c_0+x c_1) \left (c_0 c_3{}^2 c_7 c_4{}^2-c_1{}^2 c_5{}^2 (8 c_3 c_6-3 c_2 c_7)+c_1 c_3 \left (8 c_3 c_4{}^2 c_6-\left (9 c_2 c_4{}^2-5 c_0 c_5{}^2\right ) c_7\right )\right )}{c_2+x c_3}\right )}{\frac {c_3 (c_0+x c_1){}^2}{(c_2+x c_3){}^2}-\frac {2 c_3 c_4 (c_0+x c_1)}{c_2+x c_3}+c_3 c_4{}^2-c_1 c_5{}^2}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{2 c_1 c_3 \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}+\frac {\sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4} \left (c_5 \left (c_0 c_3{}^2 c_7 c_4{}^2-c_1{}^2 c_5{}^2 (8 c_3 c_6-3 c_2 c_7)+c_1 c_3 \left (8 c_3 c_4{}^2 c_6-\left (9 c_2 c_4{}^2-5 c_0 c_5{}^2\right ) c_7\right )\right ) \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}-2 c_1 c_4 \left (4 c_3{}^2 c_6 c_4{}^2+c_1 c_2 c_5{}^2 c_7-c_3 \left (4 c_1 c_6 c_5{}^2+\left (4 c_2 c_4{}^2-3 c_0 c_5{}^2\right ) c_7\right )\right )\right )}{2 c_1 c_3 \left (c_3 c_4{}^2-c_1 c_5{}^2\right ) \left (c_1-\frac {c_3 (c_1 x+c_0)}{c_3 x+c_2}\right )}}{8 \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}-\frac {\left (c_0-\frac {c_1 c_2}{c_3}\right ) c_7 \left (c_4-c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}\right ) \sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}}{4 \left (c_3 c_4{}^2-c_1 c_5{}^2\right ) \left (c_1-\frac {c_3 (c_1 x+c_0)}{c_3 x+c_2}\right ){}^2}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle 2 (c_1 c_2-c_0 c_3) \left (-\frac {\frac {\sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4} \left (c_5 \left (c_0 c_3{}^2 c_7 c_4{}^2-c_1{}^2 c_5{}^2 (8 c_3 c_6-3 c_2 c_7)+c_1 c_3 \left (8 c_3 c_4{}^2 c_6-\left (9 c_2 c_4{}^2-5 c_0 c_5{}^2\right ) c_7\right )\right ) \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}-2 c_1 c_4 \left (4 c_3{}^2 c_6 c_4{}^2+c_1 c_2 c_5{}^2 c_7-c_3 \left (4 c_1 c_6 c_5{}^2+\left (4 c_2 c_4{}^2-3 c_0 c_5{}^2\right ) c_7\right )\right )\right )}{2 c_1 c_3 \left (c_3 c_4{}^2-c_1 c_5{}^2\right ) \left (c_1-\frac {c_3 (c_1 x+c_0)}{c_3 x+c_2}\right )}-\frac {c_5 \int \frac {c_5 \left (c_4 \left (c_0 c_3{}^2 c_7 c_4{}^2+c_1{}^2 c_5{}^2 (16 c_3 c_6-3 c_2 c_7)-c_1 c_3 \left (16 c_3 c_4{}^2 c_6-\left (15 c_2 c_4{}^2-13 c_0 c_5{}^2\right ) c_7\right )\right )+\frac {(c_0+x c_1) \left (c_0 c_3{}^2 c_7 c_4{}^2-c_1{}^2 c_5{}^2 (8 c_3 c_6-3 c_2 c_7)+c_1 c_3 \left (8 c_3 c_4{}^2 c_6-\left (9 c_2 c_4{}^2-5 c_0 c_5{}^2\right ) c_7\right )\right )}{c_2+x c_3}\right )}{\frac {c_3 (c_0+x c_1){}^2}{(c_2+x c_3){}^2}-\frac {2 c_3 c_4 (c_0+x c_1)}{c_2+x c_3}+c_3 c_4{}^2-c_1 c_5{}^2}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{2 c_1 c_3 \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}}{8 \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}-\frac {\left (c_0-\frac {c_1 c_2}{c_3}\right ) c_7 \left (c_4-c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}\right ) \sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}}{4 \left (c_3 c_4{}^2-c_1 c_5{}^2\right ) \left (c_1-\frac {c_3 (c_1 x+c_0)}{c_3 x+c_2}\right ){}^2}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 (c_1 c_2-c_0 c_3) \left (-\frac {\frac {\sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4} \left (c_5 \left (c_0 c_3{}^2 c_7 c_4{}^2-c_1{}^2 c_5{}^2 (8 c_3 c_6-3 c_2 c_7)+c_1 c_3 \left (8 c_3 c_4{}^2 c_6-\left (9 c_2 c_4{}^2-5 c_0 c_5{}^2\right ) c_7\right )\right ) \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}-2 c_1 c_4 \left (4 c_3{}^2 c_6 c_4{}^2+c_1 c_2 c_5{}^2 c_7-c_3 \left (4 c_1 c_6 c_5{}^2+\left (4 c_2 c_4{}^2-3 c_0 c_5{}^2\right ) c_7\right )\right )\right )}{2 c_1 c_3 \left (c_3 c_4{}^2-c_1 c_5{}^2\right ) \left (c_1-\frac {c_3 (c_1 x+c_0)}{c_3 x+c_2}\right )}-\frac {c_5{}^2 \int \frac {c_4 \left (c_0 c_3{}^2 c_7 c_4{}^2+c_1{}^2 c_5{}^2 (16 c_3 c_6-3 c_2 c_7)-c_1 c_3 \left (16 c_3 c_4{}^2 c_6-\left (15 c_2 c_4{}^2-13 c_0 c_5{}^2\right ) c_7\right )\right )+\frac {(c_0+x c_1) \left (c_0 c_3{}^2 c_7 c_4{}^2-c_1{}^2 c_5{}^2 (8 c_3 c_6-3 c_2 c_7)+c_1 c_3 \left (8 c_3 c_4{}^2 c_6-\left (9 c_2 c_4{}^2-5 c_0 c_5{}^2\right ) c_7\right )\right )}{c_2+x c_3}}{\frac {c_3 (c_0+x c_1){}^2}{(c_2+x c_3){}^2}-\frac {2 c_3 c_4 (c_0+x c_1)}{c_2+x c_3}+c_3 c_4{}^2-c_1 c_5{}^2}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{2 c_1 c_3 \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}}{8 \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}-\frac {\left (c_0-\frac {c_1 c_2}{c_3}\right ) c_7 \left (c_4-c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}\right ) \sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4}}{4 \left (c_3 c_4{}^2-c_1 c_5{}^2\right ) \left (c_1-\frac {c_3 (c_1 x+c_0)}{c_3 x+c_2}\right ){}^2}\right )\)

\(\Big \downarrow \) 1480

\(\displaystyle 2 (c_1 c_2-c_0 c_3) \left (-\frac {\left (c_0-\frac {c_1 c_2}{c_3}\right ) \left (c_4-\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5\right ) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} c_7}{4 \left (c_1-\frac {(c_0+x c_1) c_3}{c_2+x c_3}\right ){}^2 \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}-\frac {\frac {\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \left (\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5 \left (c_0 c_3{}^2 c_7 c_4{}^2-c_1{}^2 c_5{}^2 (8 c_3 c_6-3 c_2 c_7)+c_1 c_3 \left (8 c_3 c_4{}^2 c_6-\left (9 c_2 c_4{}^2-5 c_0 c_5{}^2\right ) c_7\right )\right )-2 c_1 c_4 \left (4 c_3{}^2 c_6 c_4{}^2+c_1 c_2 c_5{}^2 c_7-c_3 \left (4 c_1 c_6 c_5{}^2+\left (4 c_2 c_4{}^2-3 c_0 c_5{}^2\right ) c_7\right )\right )\right )}{2 c_1 c_3 \left (c_1-\frac {(c_0+x c_1) c_3}{c_2+x c_3}\right ) \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}-\frac {c_5{}^2 \left (\frac {\left (\sqrt {c_3} c_4-\sqrt {c_1} c_5\right ){}^2 \left (-c_5 (8 c_3 c_6-3 c_2 c_7) c_1{}^{3/2}-2 \sqrt {c_3} c_4 (4 c_3 c_6-3 c_2 c_7) c_1+5 c_0 c_3 c_5 c_7 \sqrt {c_1}+2 c_0 c_3{}^{3/2} c_4 c_7\right ) \int \frac {1}{\frac {(c_0+x c_1) c_3}{c_2+x c_3}-\sqrt {c_3} \left (\sqrt {c_3} c_4+\sqrt {c_1} c_5\right )}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{2 \sqrt {c_1} c_5}-\frac {\left (\sqrt {c_3} c_4+\sqrt {c_1} c_5\right ){}^2 \left (c_5 (8 c_3 c_6-3 c_2 c_7) c_1{}^{3/2}-2 \sqrt {c_3} c_4 (4 c_3 c_6-3 c_2 c_7) c_1-5 c_0 c_3 c_5 c_7 \sqrt {c_1}+2 c_0 c_3{}^{3/2} c_4 c_7\right ) \int \frac {1}{\frac {(c_0+x c_1) c_3}{c_2+x c_3}-\sqrt {c_3} \left (\sqrt {c_3} c_4-\sqrt {c_1} c_5\right )}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{2 \sqrt {c_1} c_5}\right )}{2 c_1 c_3 \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}}{8 \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle 2 (c_1 c_2-c_0 c_3) \left (-\frac {\left (c_0-\frac {c_1 c_2}{c_3}\right ) \left (c_4-\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5\right ) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} c_7}{4 \left (c_1-\frac {(c_0+x c_1) c_3}{c_2+x c_3}\right ){}^2 \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}-\frac {\frac {\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \left (\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5 \left (c_0 c_3{}^2 c_7 c_4{}^2-c_1{}^2 c_5{}^2 (8 c_3 c_6-3 c_2 c_7)+c_1 c_3 \left (8 c_3 c_4{}^2 c_6-\left (9 c_2 c_4{}^2-5 c_0 c_5{}^2\right ) c_7\right )\right )-2 c_1 c_4 \left (4 c_3{}^2 c_6 c_4{}^2+c_1 c_2 c_5{}^2 c_7-c_3 \left (4 c_1 c_6 c_5{}^2+\left (4 c_2 c_4{}^2-3 c_0 c_5{}^2\right ) c_7\right )\right )\right )}{2 c_1 c_3 \left (c_1-\frac {(c_0+x c_1) c_3}{c_2+x c_3}\right ) \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}-\frac {c_5{}^2 \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{c_3} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\sqrt {\sqrt {c_3} c_4-\sqrt {c_1} c_5}}\right ) \left (\sqrt {c_3} c_4+\sqrt {c_1} c_5\right ){}^2 \left (c_5 (8 c_3 c_6-3 c_2 c_7) c_1{}^{3/2}-2 \sqrt {c_3} c_4 (4 c_3 c_6-3 c_2 c_7) c_1-5 c_0 c_3 c_5 c_7 \sqrt {c_1}+2 c_0 c_3{}^{3/2} c_4 c_7\right )}{2 \sqrt {c_1} c_3{}^{3/4} c_5 \sqrt {\sqrt {c_3} c_4-\sqrt {c_1} c_5}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{c_3} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\sqrt {\sqrt {c_3} c_4+\sqrt {c_1} c_5}}\right ) \left (\sqrt {c_3} c_4-\sqrt {c_1} c_5\right ){}^2 \left (-c_5 (8 c_3 c_6-3 c_2 c_7) c_1{}^{3/2}-2 \sqrt {c_3} c_4 (4 c_3 c_6-3 c_2 c_7) c_1+5 c_0 c_3 c_5 c_7 \sqrt {c_1}+2 c_0 c_3{}^{3/2} c_4 c_7\right )}{2 \sqrt {c_1} c_3{}^{3/4} c_5 \sqrt {\sqrt {c_3} c_4+\sqrt {c_1} c_5}}\right )}{2 c_1 c_3 \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}}{8 \left (c_3 c_4{}^2-c_1 c_5{}^2\right )}\right )\)

input
Int[(C[6] + x*C[7])/Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5] 
],x]
 
output
2*(C[1]*C[2] - C[0]*C[3])*(-1/4*((C[0] - (C[1]*C[2])/C[3])*(C[4] - Sqrt[(C 
[0] + x*C[1])/(C[2] + x*C[3])]*C[5])*Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2 
] + x*C[3])]*C[5]]*C[7])/((C[1] - ((C[0] + x*C[1])*C[3])/(C[2] + x*C[3]))^ 
2*(C[3]*C[4]^2 - C[1]*C[5]^2)) - (-1/2*(C[5]^2*(-1/2*(ArcTanh[(C[3]^(1/4)* 
Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5]])/Sqrt[Sqrt[C[3]]*C 
[4] + Sqrt[C[1]]*C[5]]]*(Sqrt[C[3]]*C[4] - Sqrt[C[1]]*C[5])^2*(2*C[0]*C[3] 
^(3/2)*C[4]*C[7] + 5*C[0]*Sqrt[C[1]]*C[3]*C[5]*C[7] - 2*C[1]*Sqrt[C[3]]*C[ 
4]*(4*C[3]*C[6] - 3*C[2]*C[7]) - C[1]^(3/2)*C[5]*(8*C[3]*C[6] - 3*C[2]*C[7 
])))/(Sqrt[C[1]]*C[3]^(3/4)*C[5]*Sqrt[Sqrt[C[3]]*C[4] + Sqrt[C[1]]*C[5]]) 
+ (ArcTanh[(C[3]^(1/4)*Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C 
[5]])/Sqrt[Sqrt[C[3]]*C[4] - Sqrt[C[1]]*C[5]]]*(Sqrt[C[3]]*C[4] + Sqrt[C[1 
]]*C[5])^2*(2*C[0]*C[3]^(3/2)*C[4]*C[7] - 5*C[0]*Sqrt[C[1]]*C[3]*C[5]*C[7] 
 - 2*C[1]*Sqrt[C[3]]*C[4]*(4*C[3]*C[6] - 3*C[2]*C[7]) + C[1]^(3/2)*C[5]*(8 
*C[3]*C[6] - 3*C[2]*C[7])))/(2*Sqrt[C[1]]*C[3]^(3/4)*C[5]*Sqrt[Sqrt[C[3]]* 
C[4] - Sqrt[C[1]]*C[5]])))/(C[1]*C[3]*(C[3]*C[4]^2 - C[1]*C[5]^2)) + (Sqrt 
[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5]]*(Sqrt[(C[0] + x*C[1])/ 
(C[2] + x*C[3])]*C[5]*(C[0]*C[3]^2*C[4]^2*C[7] - C[1]^2*C[5]^2*(8*C[3]*C[6 
] - 3*C[2]*C[7]) + C[1]*C[3]*(8*C[3]*C[4]^2*C[6] - (9*C[2]*C[4]^2 - 5*C[0] 
*C[5]^2)*C[7])) - 2*C[1]*C[4]*(4*C[3]^2*C[4]^2*C[6] + C[1]*C[2]*C[5]^2*C[7 
] - C[3]*(4*C[1]*C[5]^2*C[6] + (4*C[2]*C[4]^2 - 3*C[0]*C[5]^2)*C[7]))))...
 

3.32.40.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 654
Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_) + (c_.)*(x_)^2)), 
x_Symbol] :> Simp[2   Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 + a*e^2 - 2*c*d* 
x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x]
 

rule 686
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p 
_), x_Symbol] :> Simp[(-(d + e*x)^(m + 1))*(f*a*c*e - a*g*c*d + c*(c*d*f + 
a*e*g)*x)*((a + c*x^2)^(p + 1)/(2*a*c*(p + 1)*(c*d^2 + a*e^2))), x] + Simp[ 
1/(2*a*c*(p + 1)*(c*d^2 + a*e^2))   Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*Sim 
p[f*(c^2*d^2*(2*p + 3) + a*c*e^2*(m + 2*p + 3)) - a*c*d*e*g*m + c*e*(c*d*f 
+ a*e*g)*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && LtQ 
[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 2180
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] : 
> With[{Qx = PolynomialQuotient[Pq, a + b*x^2, x], R = Coeff[PolynomialRema 
inder[Pq, a + b*x^2, x], x, 0], S = Coeff[PolynomialRemainder[Pq, a + b*x^2 
, x], x, 1]}, Simp[(-(d + e*x)^(m + 1))*(a + b*x^2)^(p + 1)*((a*(e*R - d*S) 
 + (b*d*R + a*e*S)*x)/(2*a*(p + 1)*(b*d^2 + a*e^2))), x] + Simp[1/(2*a*(p + 
 1)*(b*d^2 + a*e^2))   Int[(d + e*x)^m*(a + b*x^2)^(p + 1)*ExpandToSum[2*a* 
(p + 1)*(b*d^2 + a*e^2)*Qx + b*d^2*R*(2*p + 3) - a*e*(d*S*m - e*R*(m + 2*p 
+ 3)) + e*(b*d*R + a*e*S)*(m + 2*p + 4)*x, x], x], x]] /; FreeQ[{a, b, d, e 
, m}, x] && PolyQ[Pq, x] && NeQ[b*d^2 + a*e^2, 0] && LtQ[p, -1] &&  !(IGtQ[ 
m, 0] && RationalQ[a, b, d, e] && (IntegerQ[p] || ILtQ[p + 1/2, 0]))
 

rule 7268
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfQuotientOfLinears 
[u, x]}, Simp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/ls 
t[[2]])], x] /;  !FalseQ[lst]]
 
3.32.40.4 Maple [F]

\[\int \frac {\textit {\_C7} x +\textit {\_C6}}{\sqrt {\textit {\_C4} +\sqrt {\frac {\textit {\_C1} x +\textit {\_C0}}{\textit {\_C3} x +\textit {\_C2}}}\, \textit {\_C5}}}d x\]

input
int((_C7*x+_C6)/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2),x)
 
output
int((_C7*x+_C6)/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2),x)
 
3.32.40.5 Fricas [F(-1)]

Timed out. \[ \int \frac {c_6+x c_7}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}} \, dx=\text {Timed out} \]

input
integrate((_C7*x+_C6)/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2),x, a 
lgorithm="fricas")
 
output
Timed out
 
3.32.40.6 Sympy [F]

\[ \int \frac {c_6+x c_7}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}} \, dx=\int \frac {_C6 + _C7 x}{\sqrt {_C4 + _C5 \sqrt {\frac {_C0}{_C2 + _C3 x} + \frac {_C1 x}{_C2 + _C3 x}}}}\, dx \]

input
integrate((_C7*x+_C6)/(_C4+((_C1*x+_C0)/(_C3*x+_C2))**(1/2)*_C5)**(1/2),x)
 
output
Integral((_C6 + _C7*x)/sqrt(_C4 + _C5*sqrt(_C0/(_C2 + _C3*x) + _C1*x/(_C2 
+ _C3*x))), x)
 
3.32.40.7 Maxima [F]

\[ \text {Unable to display latex} \]

input
integrate((_C7*x+_C6)/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2),x, a 
lgorithm="maxima")
 
output
integrate((_C7*x + _C6)/sqrt(_C5*sqrt((_C1*x + _C0)/(_C3*x + _C2)) + _C4), 
 x)
 
3.32.40.8 Giac [F(-2)]

Exception generated. \[ \int \frac {c_6+x c_7}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate((_C7*x+_C6)/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2),x, a 
lgorithm="giac")
 
output
Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:sym2poly/r2sym(const gen & e,const index_m & i,const ve 
cteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const ind 
ex_m & i,con
 
3.32.40.9 Mupad [F(-1)]

Timed out. \[ \int \frac {c_6+x c_7}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}} \, dx=\int \frac {_{\mathrm {C6}}+_{\mathrm {C7}}\,x}{\sqrt {_{\mathrm {C4}}+_{\mathrm {C5}}\,\sqrt {\frac {_{\mathrm {C0}}+_{\mathrm {C1}}\,x}{_{\mathrm {C2}}+_{\mathrm {C3}}\,x}}}} \,d x \]

input
int((_C6 + _C7*x)/(_C4 + _C5*((_C0 + _C1*x)/(_C2 + _C3*x))^(1/2))^(1/2),x)
 
output
int((_C6 + _C7*x)/(_C4 + _C5*((_C0 + _C1*x)/(_C2 + _C3*x))^(1/2))^(1/2), x 
)