3.32.50 \(\int \frac {c_8+x c_9}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7)} \, dx\) [3150]

3.32.50.1 Optimal result
3.32.50.2 Mathematica [A] (verified)
3.32.50.3 Rubi [A] (warning: unable to verify)
3.32.50.4 Maple [F]
3.32.50.5 Fricas [F(-1)]
3.32.50.6 Sympy [F]
3.32.50.7 Maxima [F]
3.32.50.8 Giac [F(-2)]
3.32.50.9 Mupad [F(-1)]

3.32.50.1 Optimal result

Integrand size = 48, antiderivative size = 1716 \[ \int \frac {c_8+x c_9}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7)} \, dx =\text {Too large to display} \]

output
2*arctanh(_C3^(1/4)*(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(_C3^( 
1/2)*_C4-_C1^(1/2)*_C5)^(1/2))*_C3^(1/4)*_C8/(_C3^(1/2)*_C4-_C1^(1/2)*_C5) 
^(1/2)/_C7+2*arctanh(_C3^(1/4)*(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^( 
1/2)/(_C3^(1/2)*_C4+_C1^(1/2)*_C5)^(1/2))*_C3^(1/4)*_C8/(_C3^(1/2)*_C4+_C1 
^(1/2)*_C5)^(1/2)/_C7+2*arctan((_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^( 
1/2)*(-_C2*_C7+_C3*_C6)^(1/2)/(-_C3*_C4*_C6+_C2*_C4*_C7-_C5*(-_C0*_C7+_C1* 
_C6)^(1/2)*(-_C2*_C7+_C3*_C6)^(1/2))^(1/2))*(-_C2*_C7+_C3*_C6)^(1/2)*_C8/_ 
C7/(-_C3*_C4*_C6+_C2*_C4*_C7-_C5*(-_C0*_C7+_C1*_C6)^(1/2)*(-_C2*_C7+_C3*_C 
6)^(1/2))^(1/2)+2*arctan((_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)*( 
-_C2*_C7+_C3*_C6)^(1/2)/(-_C3*_C4*_C6+_C2*_C4*_C7+_C5*(-_C0*_C7+_C1*_C6)^( 
1/2)*(-_C2*_C7+_C3*_C6)^(1/2))^(1/2))*(-_C2*_C7+_C3*_C6)^(1/2)*_C8/_C7/(-_ 
C3*_C4*_C6+_C2*_C4*_C7+_C5*(-_C0*_C7+_C1*_C6)^(1/2)*(-_C2*_C7+_C3*_C6)^(1/ 
2))^(1/2)-2*arctan((_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)*(_C2*_C 
7-_C3*_C6)^(1/2)/(_C3*_C4*_C6-_C2*_C4*_C7-I*_C5*(-_C0*_C7+_C1*_C6)^(1/2)*( 
_C2*_C7-_C3*_C6)^(1/2))^(1/2))*_C6*(_C2*_C7-_C3*_C6)^(1/2)*_C9/_C7^2/(_C3* 
_C4*_C6-_C2*_C4*_C7-I*_C5*(-_C0*_C7+_C1*_C6)^(1/2)*(_C2*_C7-_C3*_C6)^(1/2) 
)^(1/2)-2*arctan((_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)*(_C2*_C7- 
_C3*_C6)^(1/2)/(_C3*_C4*_C6-_C2*_C4*_C7+I*_C5*(-_C0*_C7+_C1*_C6)^(1/2)*(_C 
2*_C7-_C3*_C6)^(1/2))^(1/2))*_C6*(_C2*_C7-_C3*_C6)^(1/2)*_C9/_C7^2/(_C3*_C 
4*_C6-_C2*_C4*_C7+I*_C5*(-_C0*_C7+_C1*_C6)^(1/2)*(_C2*_C7-_C3*_C6)^(1/2...
 
3.32.50.2 Mathematica [A] (verified)

Time = 10.87 (sec) , antiderivative size = 1337, normalized size of antiderivative = 0.78 \[ \int \frac {c_8+x c_9}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7)} \, dx=-\frac {(c_1 c_2-c_0 c_3) \left (\frac {2 (c_2+x c_3) \left (c_4-\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5\right ) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} c_7 c_9}{(c_1 c_2-c_0 c_3) \left (-c_3 c_4{}^2+c_1 c_5{}^2\right )}+\frac {4 \arctan \left (\frac {\sqrt {c_3 c_4{}^2 c_6-c_1 c_5{}^2 c_6-c_2 c_4{}^2 c_7+c_0 c_5{}^2 c_7}}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \sqrt {-c_3 c_4 c_6+c_2 c_4 c_7-c_5 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7}}}\right ) \sqrt {c_3 c_6-c_2 c_7} \left (c_1 c_5 c_6-c_0 c_5 c_7+c_4 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7}\right ) (-c_7 c_8+c_6 c_9)}{(c_1 c_2-c_0 c_3) \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_4{}^2 c_6-c_1 c_5{}^2 c_6+\left (-c_2 c_4{}^2+c_0 c_5{}^2\right ) c_7} \sqrt {-c_3 c_4 c_6+c_2 c_4 c_7-c_5 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7}}}+\frac {4 \arctan \left (\frac {\sqrt {c_3 c_4{}^2 c_6-c_1 c_5{}^2 c_6-c_2 c_4{}^2 c_7+c_0 c_5{}^2 c_7}}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \sqrt {-c_3 c_4 c_6+c_2 c_4 c_7+c_5 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7}}}\right ) \sqrt {c_3 c_6-c_2 c_7} \left (-c_1 c_5 c_6+c_0 c_5 c_7+c_4 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7}\right ) (-c_7 c_8+c_6 c_9)}{(c_1 c_2-c_0 c_3) \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_4{}^2 c_6-c_1 c_5{}^2 c_6+\left (-c_2 c_4{}^2+c_0 c_5{}^2\right ) c_7} \sqrt {-c_3 c_4 c_6+c_2 c_4 c_7+c_5 \sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7}}}-\frac {\arctan \left (\frac {\sqrt {c_3 c_4{}^2-c_1 c_5{}^2}}{\sqrt {-c_3 c_4-\sqrt {c_1} \sqrt {c_3} c_5} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}\right ) \left (\sqrt {c_3} c_4+\sqrt {c_1} c_5\right ) \left (c_0 c_3 c_5 c_7 c_9+4 \sqrt {c_1} c_3{}^{3/2} c_4 (c_7 c_8-c_6 c_9)-c_1 c_5 (c_2 c_7 c_9+4 c_3 (c_7 c_8-c_6 c_9))\right )}{\sqrt {c_1} \sqrt {c_3} (c_1 c_2-c_0 c_3) \left (-\sqrt {c_3} c_4+\sqrt {c_1} c_5\right ) \sqrt {-c_3 c_4-\sqrt {c_1} \sqrt {c_3} c_5} \sqrt {c_3 c_4{}^2-c_1 c_5{}^2}}-\frac {\arctan \left (\frac {\sqrt {c_3 c_4{}^2-c_1 c_5{}^2}}{\sqrt {-c_3 c_4+\sqrt {c_1} \sqrt {c_3} c_5} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}\right ) \left (\sqrt {c_3} c_4-\sqrt {c_1} c_5\right ) \left (-c_0 c_3 c_5 c_7 c_9+4 \sqrt {c_1} c_3{}^{3/2} c_4 (c_7 c_8-c_6 c_9)+c_1 c_5 (c_2 c_7 c_9+4 c_3 (c_7 c_8-c_6 c_9))\right )}{\sqrt {c_1} \sqrt {c_3} (-c_1 c_2+c_0 c_3) \left (\sqrt {c_3} c_4+\sqrt {c_1} c_5\right ) \sqrt {-c_3 c_4+\sqrt {c_1} \sqrt {c_3} c_5} \sqrt {c_3 c_4{}^2-c_1 c_5{}^2}}\right )}{2 c_7{}^2} \]

input
Integrate[(C[8] + x*C[9])/(Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3] 
)]*C[5]]*(C[6] + x*C[7])),x]
 
output
-1/2*((C[1]*C[2] - C[0]*C[3])*((2*(C[2] + x*C[3])*(C[4] - Sqrt[(C[0] + x*C 
[1])/(C[2] + x*C[3])]*C[5])*Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3 
])]*C[5]]*C[7]*C[9])/((C[1]*C[2] - C[0]*C[3])*(-(C[3]*C[4]^2) + C[1]*C[5]^ 
2)) + (4*ArcTan[Sqrt[C[3]*C[4]^2*C[6] - C[1]*C[5]^2*C[6] - C[2]*C[4]^2*C[7 
] + C[0]*C[5]^2*C[7]]/(Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C 
[5]]*Sqrt[-(C[3]*C[4]*C[6]) + C[2]*C[4]*C[7] - C[5]*Sqrt[C[1]*C[6] - C[0]* 
C[7]]*Sqrt[C[3]*C[6] - C[2]*C[7]]])]*Sqrt[C[3]*C[6] - C[2]*C[7]]*(C[1]*C[5 
]*C[6] - C[0]*C[5]*C[7] + C[4]*Sqrt[C[1]*C[6] - C[0]*C[7]]*Sqrt[C[3]*C[6] 
- C[2]*C[7]])*(-(C[7]*C[8]) + C[6]*C[9]))/((C[1]*C[2] - C[0]*C[3])*Sqrt[C[ 
1]*C[6] - C[0]*C[7]]*Sqrt[C[3]*C[4]^2*C[6] - C[1]*C[5]^2*C[6] + (-(C[2]*C[ 
4]^2) + C[0]*C[5]^2)*C[7]]*Sqrt[-(C[3]*C[4]*C[6]) + C[2]*C[4]*C[7] - C[5]* 
Sqrt[C[1]*C[6] - C[0]*C[7]]*Sqrt[C[3]*C[6] - C[2]*C[7]]]) + (4*ArcTan[Sqrt 
[C[3]*C[4]^2*C[6] - C[1]*C[5]^2*C[6] - C[2]*C[4]^2*C[7] + C[0]*C[5]^2*C[7] 
]/(Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5]]*Sqrt[-(C[3]*C[4 
]*C[6]) + C[2]*C[4]*C[7] + C[5]*Sqrt[C[1]*C[6] - C[0]*C[7]]*Sqrt[C[3]*C[6] 
 - C[2]*C[7]]])]*Sqrt[C[3]*C[6] - C[2]*C[7]]*(-(C[1]*C[5]*C[6]) + C[0]*C[5 
]*C[7] + C[4]*Sqrt[C[1]*C[6] - C[0]*C[7]]*Sqrt[C[3]*C[6] - C[2]*C[7]])*(-( 
C[7]*C[8]) + C[6]*C[9]))/((C[1]*C[2] - C[0]*C[3])*Sqrt[C[1]*C[6] - C[0]*C[ 
7]]*Sqrt[C[3]*C[4]^2*C[6] - C[1]*C[5]^2*C[6] + (-(C[2]*C[4]^2) + C[0]*C[5] 
^2)*C[7]]*Sqrt[-(C[3]*C[4]*C[6]) + C[2]*C[4]*C[7] + C[5]*Sqrt[C[1]*C[6]...
 
3.32.50.3 Rubi [A] (warning: unable to verify)

Time = 21.37 (sec) , antiderivative size = 1077, normalized size of antiderivative = 0.63, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.104, Rules used = {7268, 7267, 7292, 7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c_9 x+c_8}{\sqrt {c_5 \sqrt {\frac {c_1 x+c_0}{c_3 x+c_2}}+c_4} (c_7 x+c_6)} \, dx\)

\(\Big \downarrow \) 7268

\(\displaystyle 2 (c_1 c_2-c_0 c_3) \int \frac {\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} \left (c_1 c_8-c_0 c_9-\frac {(c_0+x c_1) (c_3 c_8-c_2 c_9)}{c_2+x c_3}\right )}{\left (c_1-\frac {(c_0+x c_1) c_3}{c_2+x c_3}\right ){}^2 \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \left (c_1 c_6-c_0 c_7-\frac {(c_0+x c_1) (c_3 c_6-c_2 c_7)}{c_2+x c_3}\right )}d\sqrt {\frac {c_0+x c_1}{c_2+x c_3}}\)

\(\Big \downarrow \) 7267

\(\displaystyle \frac {4 (c_1 c_2-c_0 c_3) \int \frac {\left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ) \left (-\frac {(c_3 c_8-c_2 c_9) \left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ){}^2}{c_5{}^2}+c_1 c_8-c_0 c_9\right )}{\left (c_1-\frac {c_3 \left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ){}^2}{c_5{}^2}\right ){}^2 \left (-\frac {(c_3 c_6-c_2 c_7) \left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ){}^2}{c_5{}^2}+c_1 c_6-c_0 c_7\right )}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{c_5{}^2}\)

\(\Big \downarrow \) 7292

\(\displaystyle \frac {4 (c_1 c_2-c_0 c_3) \int \frac {\left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ) \left (-\frac {(c_3 c_8-c_2 c_9) (c_0+x c_1){}^2}{(c_2+x c_3){}^2 c_5{}^2}+\frac {2 c_4 (c_3 c_8-c_2 c_9) (c_0+x c_1)}{(c_2+x c_3) c_5{}^2}+c_1 c_8-\frac {c_3 c_4{}^2 c_8}{c_5{}^2}-c_0 c_9+\frac {c_2 c_4{}^2 c_9}{c_5{}^2}\right )}{\left (-\frac {c_3 (c_0+x c_1){}^2}{(c_2+x c_3){}^2 c_5{}^2}+\frac {2 c_3 c_4 (c_0+x c_1)}{(c_2+x c_3) c_5{}^2}+c_1-\frac {c_3 c_4{}^2}{c_5{}^2}\right ){}^2 \left (-\frac {(c_3 c_6-c_2 c_7) (c_0+x c_1){}^2}{(c_2+x c_3){}^2 c_5{}^2}+\frac {2 c_4 (c_3 c_6-c_2 c_7) (c_0+x c_1)}{(c_2+x c_3) c_5{}^2}+c_1 c_6-\frac {c_3 c_4{}^2 c_6}{c_5{}^2}-c_0 c_7+\frac {c_2 c_4{}^2 c_7}{c_5{}^2}\right )}d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{c_5{}^2}\)

\(\Big \downarrow \) 7279

\(\displaystyle \frac {4 (c_1 c_2-c_0 c_3) \int \left (\frac {\left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ) c_9 c_5{}^4}{\left (\frac {c_3 (c_0+x c_1){}^2}{(c_2+x c_3){}^2}-\frac {2 c_3 c_4 (c_0+x c_1)}{c_2+x c_3}+c_3 c_4{}^2-c_1 c_5{}^2\right ){}^2 c_7}+\frac {\left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ) (c_3 c_6-c_2 c_7) (c_7 c_8-c_6 c_9) c_5{}^2}{(c_1 c_2-c_0 c_3) c_7{}^2 \left (\frac {(c_3 c_6-c_2 c_7) (c_0+x c_1){}^2}{(c_2+x c_3){}^2}-\frac {2 c_4 (c_3 c_6-c_2 c_7) (c_0+x c_1)}{c_2+x c_3}+c_3 c_4{}^2 c_6-c_1 c_5{}^2 c_6-\left (c_2 c_4{}^2-c_0 c_5{}^2\right ) c_7\right )}+\frac {c_3 \left (\frac {c_0+x c_1}{c_2+x c_3}-c_4\right ) (c_7 c_8-c_6 c_9) c_5{}^2}{(c_1 c_2-c_0 c_3) \left (-\frac {c_3 (c_0+x c_1){}^2}{(c_2+x c_3){}^2}+\frac {2 c_3 c_4 (c_0+x c_1)}{c_2+x c_3}-c_3 c_4{}^2+c_1 c_5{}^2\right ) c_7{}^2}\right )d\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{c_5{}^2}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {4 (c_1 c_2-c_0 c_3) \left (\frac {\left (\frac {c_0+x c_1}{c_2+x c_3}-2 c_4\right ) \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} c_9 c_5{}^4}{4 \left (c_3 c_4{}^2-c_1 c_5{}^2\right ) \left (\frac {c_3 (c_0+x c_1){}^2}{(c_2+x c_3){}^2}-\frac {2 c_3 c_4 (c_0+x c_1)}{c_2+x c_3}+c_3 c_4{}^2-c_1 c_5{}^2\right ) c_7}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{c_3} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\sqrt {\sqrt {c_3} c_4-\sqrt {c_1} c_5}}\right ) c_9 c_5{}^3}{8 \sqrt {c_1} c_3{}^{3/4} \left (\sqrt {c_3} c_4-\sqrt {c_1} c_5\right ){}^{3/2} c_7}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{c_3} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\sqrt {\sqrt {c_3} c_4+\sqrt {c_1} c_5}}\right ) c_9 c_5{}^3}{8 \sqrt {c_1} c_3{}^{3/4} \left (\sqrt {c_3} c_4+\sqrt {c_1} c_5\right ){}^{3/2} c_7}-\frac {\text {arctanh}\left (\frac {\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \sqrt {c_3 c_6-c_2 c_7}}{\sqrt {-\sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7} c_5+c_3 c_4 c_6-c_2 c_4 c_7}}\right ) \sqrt {c_3 c_6-c_2 c_7} (c_7 c_8-c_6 c_9) c_5{}^2}{2 (c_1 c_2-c_0 c_3) c_7{}^2 \sqrt {-\sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7} c_5+c_3 c_4 c_6-c_2 c_4 c_7}}-\frac {\text {arctanh}\left (\frac {\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} \sqrt {c_3 c_6-c_2 c_7}}{\sqrt {\sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7} c_5+c_3 c_4 c_6-c_2 c_4 c_7}}\right ) \sqrt {c_3 c_6-c_2 c_7} (c_7 c_8-c_6 c_9) c_5{}^2}{2 (c_1 c_2-c_0 c_3) c_7{}^2 \sqrt {\sqrt {c_1 c_6-c_0 c_7} \sqrt {c_3 c_6-c_2 c_7} c_5+c_3 c_4 c_6-c_2 c_4 c_7}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{c_3} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\sqrt {\sqrt {c_3} c_4-\sqrt {c_1} c_5}}\right ) \sqrt [4]{c_3} (c_7 c_8-c_6 c_9) c_5{}^2}{2 (c_1 c_2-c_0 c_3) \sqrt {\sqrt {c_3} c_4-\sqrt {c_1} c_5} c_7{}^2}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{c_3} \sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5}}{\sqrt {\sqrt {c_3} c_4+\sqrt {c_1} c_5}}\right ) \sqrt [4]{c_3} (c_7 c_8-c_6 c_9) c_5{}^2}{2 (c_1 c_2-c_0 c_3) \sqrt {\sqrt {c_3} c_4+\sqrt {c_1} c_5} c_7{}^2}\right )}{c_5{}^2}\)

input
Int[(C[8] + x*C[9])/(Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5 
]]*(C[6] + x*C[7])),x]
 
output
(4*(C[1]*C[2] - C[0]*C[3])*(-1/8*(ArcTanh[(C[3]^(1/4)*Sqrt[C[4] + Sqrt[(C[ 
0] + x*C[1])/(C[2] + x*C[3])]*C[5]])/Sqrt[Sqrt[C[3]]*C[4] - Sqrt[C[1]]*C[5 
]]]*C[5]^3*C[9])/(Sqrt[C[1]]*C[3]^(3/4)*(Sqrt[C[3]]*C[4] - Sqrt[C[1]]*C[5] 
)^(3/2)*C[7]) + (ArcTanh[(C[3]^(1/4)*Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2 
] + x*C[3])]*C[5]])/Sqrt[Sqrt[C[3]]*C[4] + Sqrt[C[1]]*C[5]]]*C[5]^3*C[9])/ 
(8*Sqrt[C[1]]*C[3]^(3/4)*(Sqrt[C[3]]*C[4] + Sqrt[C[1]]*C[5])^(3/2)*C[7]) + 
 (((C[0] + x*C[1])/(C[2] + x*C[3]) - 2*C[4])*C[5]^4*Sqrt[C[4] + Sqrt[(C[0] 
 + x*C[1])/(C[2] + x*C[3])]*C[5]]*C[9])/(4*(C[3]*C[4]^2 - C[1]*C[5]^2)*((( 
C[0] + x*C[1])^2*C[3])/(C[2] + x*C[3])^2 - (2*(C[0] + x*C[1])*C[3]*C[4])/( 
C[2] + x*C[3]) + C[3]*C[4]^2 - C[1]*C[5]^2)*C[7]) + (ArcTanh[(C[3]^(1/4)*S 
qrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5]])/Sqrt[Sqrt[C[3]]*C[ 
4] - Sqrt[C[1]]*C[5]]]*C[3]^(1/4)*C[5]^2*(C[7]*C[8] - C[6]*C[9]))/(2*(C[1] 
*C[2] - C[0]*C[3])*Sqrt[Sqrt[C[3]]*C[4] - Sqrt[C[1]]*C[5]]*C[7]^2) + (ArcT 
anh[(C[3]^(1/4)*Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[5]])/S 
qrt[Sqrt[C[3]]*C[4] + Sqrt[C[1]]*C[5]]]*C[3]^(1/4)*C[5]^2*(C[7]*C[8] - C[6 
]*C[9]))/(2*(C[1]*C[2] - C[0]*C[3])*Sqrt[Sqrt[C[3]]*C[4] + Sqrt[C[1]]*C[5] 
]*C[7]^2) - (ArcTanh[(Sqrt[C[4] + Sqrt[(C[0] + x*C[1])/(C[2] + x*C[3])]*C[ 
5]]*Sqrt[C[3]*C[6] - C[2]*C[7]])/Sqrt[C[3]*C[4]*C[6] - C[2]*C[4]*C[7] - C[ 
5]*Sqrt[C[1]*C[6] - C[0]*C[7]]*Sqrt[C[3]*C[6] - C[2]*C[7]]]]*C[5]^2*Sqrt[C 
[3]*C[6] - C[2]*C[7]]*(C[7]*C[8] - C[6]*C[9]))/(2*(C[1]*C[2] - C[0]*C[3...
 

3.32.50.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7267
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfLinear[u, x]}, Si 
mp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/lst[[2]])], x 
] /;  !FalseQ[lst] && SubstForFractionalPowerQ[u, lst[[3]], x]]
 

rule 7268
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfQuotientOfLinears 
[u, x]}, Simp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/ls 
t[[2]])], x] /;  !FalseQ[lst]]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 

rule 7292
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =! 
= u]
 
3.32.50.4 Maple [F]

\[\int \frac {\textit {\_C9} x +\textit {\_C8}}{\sqrt {\textit {\_C4} +\sqrt {\frac {\textit {\_C1} x +\textit {\_C0}}{\textit {\_C3} x +\textit {\_C2}}}\, \textit {\_C5}}\, \left (\textit {\_C7} x +\textit {\_C6} \right )}d x\]

input
int((_C9*x+_C8)/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(_C7*x+_C6 
),x)
 
output
int((_C9*x+_C8)/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(_C7*x+_C6 
),x)
 
3.32.50.5 Fricas [F(-1)]

Timed out. \[ \int \frac {c_8+x c_9}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7)} \, dx=\text {Timed out} \]

input
integrate((_C9*x+_C8)/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(_C7 
*x+_C6),x, algorithm="fricas")
 
output
Timed out
 
3.32.50.6 Sympy [F]

\[ \int \frac {c_8+x c_9}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7)} \, dx=\int \frac {_C8 + _C9 x}{\sqrt {_C4 + _C5 \sqrt {\frac {_C0}{_C2 + _C3 x} + \frac {_C1 x}{_C2 + _C3 x}}} \left (_C6 + _C7 x\right )}\, dx \]

input
integrate((_C9*x+_C8)/(_C4+((_C1*x+_C0)/(_C3*x+_C2))**(1/2)*_C5)**(1/2)/(_ 
C7*x+_C6),x)
 
output
Integral((_C8 + _C9*x)/(sqrt(_C4 + _C5*sqrt(_C0/(_C2 + _C3*x) + _C1*x/(_C2 
 + _C3*x)))*(_C6 + _C7*x)), x)
 
3.32.50.7 Maxima [F]

\[ \text {Unable to display latex} \]

input
integrate((_C9*x+_C8)/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(_C7 
*x+_C6),x, algorithm="maxima")
 
output
integrate((_C9*x + _C8)/((_C7*x + _C6)*sqrt(_C5*sqrt((_C1*x + _C0)/(_C3*x 
+ _C2)) + _C4)), x)
 
3.32.50.8 Giac [F(-2)]

Exception generated. \[ \int \frac {c_8+x c_9}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7)} \, dx=\text {Exception raised: TypeError} \]

input
integrate((_C9*x+_C8)/(_C4+((_C1*x+_C0)/(_C3*x+_C2))^(1/2)*_C5)^(1/2)/(_C7 
*x+_C6),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(con 
st gen &
 
3.32.50.9 Mupad [F(-1)]

Timed out. \[ \int \frac {c_8+x c_9}{\sqrt {c_4+\sqrt {\frac {c_0+x c_1}{c_2+x c_3}} c_5} (c_6+x c_7)} \, dx=\int \frac {_{\mathrm {C8}}+_{\mathrm {C9}}\,x}{\sqrt {_{\mathrm {C4}}+_{\mathrm {C5}}\,\sqrt {\frac {_{\mathrm {C0}}+_{\mathrm {C1}}\,x}{_{\mathrm {C2}}+_{\mathrm {C3}}\,x}}}\,\left (_{\mathrm {C6}}+_{\mathrm {C7}}\,x\right )} \,d x \]

input
int((_C8 + _C9*x)/((_C4 + _C5*((_C0 + _C1*x)/(_C2 + _C3*x))^(1/2))^(1/2)*( 
_C6 + _C7*x)),x)
 
output
int((_C8 + _C9*x)/((_C4 + _C5*((_C0 + _C1*x)/(_C2 + _C3*x))^(1/2))^(1/2)*( 
_C6 + _C7*x)), x)