3.3.96 \(\int \frac {x^4 (9+5 x^4)}{\sqrt {x+x^5} (-1-x^4+a x^9)} \, dx\) [296]

3.3.96.1 Optimal result
3.3.96.2 Mathematica [F]
3.3.96.3 Rubi [F]
3.3.96.4 Maple [F]
3.3.96.5 Fricas [B] (verification not implemented)
3.3.96.6 Sympy [F]
3.3.96.7 Maxima [F]
3.3.96.8 Giac [F]
3.3.96.9 Mupad [B] (verification not implemented)

3.3.96.1 Optimal result

Integrand size = 34, antiderivative size = 26 \[ \int \frac {x^4 \left (9+5 x^4\right )}{\sqrt {x+x^5} \left (-1-x^4+a x^9\right )} \, dx=-\frac {2 \text {arctanh}\left (\frac {\sqrt {x+x^5}}{\sqrt {a} x^5}\right )}{\sqrt {a}} \]

output
-2*arctanh((x^5+x)^(1/2)/a^(1/2)/x^5)/a^(1/2)
 
3.3.96.2 Mathematica [F]

\[ \int \frac {x^4 \left (9+5 x^4\right )}{\sqrt {x+x^5} \left (-1-x^4+a x^9\right )} \, dx=\int \frac {x^4 \left (9+5 x^4\right )}{\sqrt {x+x^5} \left (-1-x^4+a x^9\right )} \, dx \]

input
Integrate[(x^4*(9 + 5*x^4))/(Sqrt[x + x^5]*(-1 - x^4 + a*x^9)),x]
 
output
Integrate[(x^4*(9 + 5*x^4))/(Sqrt[x + x^5]*(-1 - x^4 + a*x^9)), x]
 
3.3.96.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4 \left (5 x^4+9\right )}{\sqrt {x^5+x} \left (a x^9-x^4-1\right )} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt {x^4+1} \int -\frac {x^{7/2} \left (5 x^4+9\right )}{\sqrt {x^4+1} \left (-a x^9+x^4+1\right )}dx}{\sqrt {x^5+x}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt {x} \sqrt {x^4+1} \int \frac {x^{7/2} \left (5 x^4+9\right )}{\sqrt {x^4+1} \left (-a x^9+x^4+1\right )}dx}{\sqrt {x^5+x}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {x^4+1} \int \frac {x^4 \left (5 x^4+9\right )}{\sqrt {x^4+1} \left (-a x^9+x^4+1\right )}d\sqrt {x}}{\sqrt {x^5+x}}\)

\(\Big \downarrow \) 7293

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {x^4+1} \int \left (-\frac {5 x^8}{\sqrt {x^4+1} \left (a x^9-x^4-1\right )}-\frac {9 x^4}{\sqrt {x^4+1} \left (a x^9-x^4-1\right )}\right )d\sqrt {x}}{\sqrt {x^5+x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {x^4+1} \left (-9 \int \frac {x^4}{\sqrt {x^4+1} \left (a x^9-x^4-1\right )}d\sqrt {x}-5 \int \frac {x^8}{\sqrt {x^4+1} \left (a x^9-x^4-1\right )}d\sqrt {x}\right )}{\sqrt {x^5+x}}\)

input
Int[(x^4*(9 + 5*x^4))/(Sqrt[x + x^5]*(-1 - x^4 + a*x^9)),x]
 
output
$Aborted
 

3.3.96.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.3.96.4 Maple [F]

\[\int \frac {x^{4} \left (5 x^{4}+9\right )}{\sqrt {x^{5}+x}\, \left (a \,x^{9}-x^{4}-1\right )}d x\]

input
int(x^4*(5*x^4+9)/(x^5+x)^(1/2)/(a*x^9-x^4-1),x)
 
output
int(x^4*(5*x^4+9)/(x^5+x)^(1/2)/(a*x^9-x^4-1),x)
 
3.3.96.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 47 vs. \(2 (20) = 40\).

Time = 0.38 (sec) , antiderivative size = 139, normalized size of antiderivative = 5.35 \[ \int \frac {x^4 \left (9+5 x^4\right )}{\sqrt {x+x^5} \left (-1-x^4+a x^9\right )} \, dx=\left [\frac {\log \left (\frac {a^{2} x^{18} + 6 \, a x^{13} + 6 \, a x^{9} + x^{8} + 2 \, x^{4} - 4 \, {\left (a x^{13} + x^{8} + x^{4}\right )} \sqrt {x^{5} + x} \sqrt {a} + 1}{a^{2} x^{18} - 2 \, a x^{13} - 2 \, a x^{9} + x^{8} + 2 \, x^{4} + 1}\right )}{2 \, \sqrt {a}}, \frac {\sqrt {-a} \arctan \left (\frac {{\left (a x^{9} + x^{4} + 1\right )} \sqrt {x^{5} + x} \sqrt {-a}}{2 \, {\left (a x^{9} + a x^{5}\right )}}\right )}{a}\right ] \]

input
integrate(x^4*(5*x^4+9)/(x^5+x)^(1/2)/(a*x^9-x^4-1),x, algorithm="fricas")
 
output
[1/2*log((a^2*x^18 + 6*a*x^13 + 6*a*x^9 + x^8 + 2*x^4 - 4*(a*x^13 + x^8 + 
x^4)*sqrt(x^5 + x)*sqrt(a) + 1)/(a^2*x^18 - 2*a*x^13 - 2*a*x^9 + x^8 + 2*x 
^4 + 1))/sqrt(a), sqrt(-a)*arctan(1/2*(a*x^9 + x^4 + 1)*sqrt(x^5 + x)*sqrt 
(-a)/(a*x^9 + a*x^5))/a]
 
3.3.96.6 Sympy [F]

\[ \int \frac {x^4 \left (9+5 x^4\right )}{\sqrt {x+x^5} \left (-1-x^4+a x^9\right )} \, dx=\int \frac {x^{4} \cdot \left (5 x^{4} + 9\right )}{\sqrt {x \left (x^{4} + 1\right )} \left (a x^{9} - x^{4} - 1\right )}\, dx \]

input
integrate(x**4*(5*x**4+9)/(x**5+x)**(1/2)/(a*x**9-x**4-1),x)
 
output
Integral(x**4*(5*x**4 + 9)/(sqrt(x*(x**4 + 1))*(a*x**9 - x**4 - 1)), x)
 
3.3.96.7 Maxima [F]

\[ \int \frac {x^4 \left (9+5 x^4\right )}{\sqrt {x+x^5} \left (-1-x^4+a x^9\right )} \, dx=\int { \frac {{\left (5 \, x^{4} + 9\right )} x^{4}}{{\left (a x^{9} - x^{4} - 1\right )} \sqrt {x^{5} + x}} \,d x } \]

input
integrate(x^4*(5*x^4+9)/(x^5+x)^(1/2)/(a*x^9-x^4-1),x, algorithm="maxima")
 
output
integrate((5*x^4 + 9)*x^4/((a*x^9 - x^4 - 1)*sqrt(x^5 + x)), x)
 
3.3.96.8 Giac [F]

\[ \int \frac {x^4 \left (9+5 x^4\right )}{\sqrt {x+x^5} \left (-1-x^4+a x^9\right )} \, dx=\int { \frac {{\left (5 \, x^{4} + 9\right )} x^{4}}{{\left (a x^{9} - x^{4} - 1\right )} \sqrt {x^{5} + x}} \,d x } \]

input
integrate(x^4*(5*x^4+9)/(x^5+x)^(1/2)/(a*x^9-x^4-1),x, algorithm="giac")
 
output
integrate((5*x^4 + 9)*x^4/((a*x^9 - x^4 - 1)*sqrt(x^5 + x)), x)
 
3.3.96.9 Mupad [B] (verification not implemented)

Time = 5.82 (sec) , antiderivative size = 46, normalized size of antiderivative = 1.77 \[ \int \frac {x^4 \left (9+5 x^4\right )}{\sqrt {x+x^5} \left (-1-x^4+a x^9\right )} \, dx=\frac {\ln \left (\frac {a\,x^9+x^4-2\,\sqrt {a}\,x^4\,\sqrt {x^5+x}+1}{-4\,a\,x^9+4\,x^4+4}\right )}{\sqrt {a}} \]

input
int(-(x^4*(5*x^4 + 9))/((x + x^5)^(1/2)*(x^4 - a*x^9 + 1)),x)
 
output
log((a*x^9 + x^4 - 2*a^(1/2)*x^4*(x + x^5)^(1/2) + 1)/(4*x^4 - 4*a*x^9 + 4 
))/a^(1/2)