3.4.44 \(\int \frac {1}{(-1+x) \sqrt [4]{2-2 x+x^2}} \, dx\) [344]

3.4.44.1 Optimal result
3.4.44.2 Mathematica [A] (verified)
3.4.44.3 Rubi [A] (warning: unable to verify)
3.4.44.4 Maple [A] (verified)
3.4.44.5 Fricas [A] (verification not implemented)
3.4.44.6 Sympy [F]
3.4.44.7 Maxima [F]
3.4.44.8 Giac [F]
3.4.44.9 Mupad [F(-1)]

3.4.44.1 Optimal result

Integrand size = 18, antiderivative size = 29 \[ \int \frac {1}{(-1+x) \sqrt [4]{2-2 x+x^2}} \, dx=\arctan \left (\sqrt [4]{2-2 x+x^2}\right )-\text {arctanh}\left (\sqrt [4]{2-2 x+x^2}\right ) \]

output
arctan((x^2-2*x+2)^(1/4))-arctanh((x^2-2*x+2)^(1/4))
 
3.4.44.2 Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.00 \[ \int \frac {1}{(-1+x) \sqrt [4]{2-2 x+x^2}} \, dx=\arctan \left (\sqrt [4]{2-2 x+x^2}\right )-\text {arctanh}\left (\sqrt [4]{2-2 x+x^2}\right ) \]

input
Integrate[1/((-1 + x)*(2 - 2*x + x^2)^(1/4)),x]
 
output
ArcTan[(2 - 2*x + x^2)^(1/4)] - ArcTanh[(2 - 2*x + x^2)^(1/4)]
 
3.4.44.3 Rubi [A] (warning: unable to verify)

Time = 0.18 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.79, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.389, Rules used = {1118, 243, 73, 25, 827, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(x-1) \sqrt [4]{x^2-2 x+2}} \, dx\)

\(\Big \downarrow \) 1118

\(\displaystyle \int \frac {1}{\sqrt [4]{(x-1)^2+1} (x-1)}d(x-1)\)

\(\Big \downarrow \) 243

\(\displaystyle \frac {1}{2} \int \frac {1}{(x-1)^2 \sqrt [4]{x}}d(x-1)^2\)

\(\Big \downarrow \) 73

\(\displaystyle 2 \int -\frac {(x-1)^4}{1-(x-1)^8}d\sqrt [4]{x}\)

\(\Big \downarrow \) 25

\(\displaystyle -2 \int \frac {(x-1)^4}{1-(x-1)^8}d\sqrt [4]{x}\)

\(\Big \downarrow \) 827

\(\displaystyle 2 \left (\frac {1}{2} \int \frac {1}{(x-1)^4+1}d\sqrt [4]{x}-\frac {1}{2} \int \frac {1}{1-(x-1)^4}d\sqrt [4]{x}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle 2 \left (-\frac {1}{2} \int \frac {1}{1-(x-1)^4}d\sqrt [4]{x}-\frac {1}{2} \arctan (1-x)\right )\)

\(\Big \downarrow \) 219

\(\displaystyle 2 \left (\frac {1}{2} \text {arctanh}(1-x)-\frac {1}{2} \arctan (1-x)\right )\)

input
Int[1/((-1 + x)*(2 - 2*x + x^2)^(1/4)),x]
 
output
2*(-1/2*ArcTan[1 - x] + ArcTanh[1 - x]/2)
 

3.4.44.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 1118
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_S 
ymbol] :> Simp[1/e   Subst[Int[x^m*(a - b^2/(4*c) + (c*x^2)/e^2)^p, x], x, 
d + e*x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[2*c*d - b*e, 0]
 
3.4.44.4 Maple [A] (verified)

Time = 2.80 (sec) , antiderivative size = 43, normalized size of antiderivative = 1.48

method result size
pseudoelliptic \(\frac {\ln \left (\left (x^{2}-2 x +2\right )^{\frac {1}{4}}-1\right )}{2}-\frac {\ln \left (\left (x^{2}-2 x +2\right )^{\frac {1}{4}}+1\right )}{2}+\arctan \left (\left (x^{2}-2 x +2\right )^{\frac {1}{4}}\right )\) \(43\)
trager \(\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (-\frac {2 \left (x^{2}-2 x +2\right )^{\frac {3}{4}}+2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \sqrt {x^{2}-2 x +2}-\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{2}+2 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x -2 \left (x^{2}-2 x +2\right )^{\frac {1}{4}}-3 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right )}{\left (x -1\right )^{2}}\right )}{2}-\frac {\ln \left (-\frac {2 \left (x^{2}-2 x +2\right )^{\frac {3}{4}}+2 \sqrt {x^{2}-2 x +2}+x^{2}+2 \left (x^{2}-2 x +2\right )^{\frac {1}{4}}-2 x +3}{\left (x -1\right )^{2}}\right )}{2}\) \(143\)

input
int(1/(x-1)/(x^2-2*x+2)^(1/4),x,method=_RETURNVERBOSE)
 
output
1/2*ln((x^2-2*x+2)^(1/4)-1)-1/2*ln((x^2-2*x+2)^(1/4)+1)+arctan((x^2-2*x+2) 
^(1/4))
 
3.4.44.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 42, normalized size of antiderivative = 1.45 \[ \int \frac {1}{(-1+x) \sqrt [4]{2-2 x+x^2}} \, dx=\arctan \left ({\left (x^{2} - 2 \, x + 2\right )}^{\frac {1}{4}}\right ) - \frac {1}{2} \, \log \left ({\left (x^{2} - 2 \, x + 2\right )}^{\frac {1}{4}} + 1\right ) + \frac {1}{2} \, \log \left ({\left (x^{2} - 2 \, x + 2\right )}^{\frac {1}{4}} - 1\right ) \]

input
integrate(1/(-1+x)/(x^2-2*x+2)^(1/4),x, algorithm="fricas")
 
output
arctan((x^2 - 2*x + 2)^(1/4)) - 1/2*log((x^2 - 2*x + 2)^(1/4) + 1) + 1/2*l 
og((x^2 - 2*x + 2)^(1/4) - 1)
 
3.4.44.6 Sympy [F]

\[ \int \frac {1}{(-1+x) \sqrt [4]{2-2 x+x^2}} \, dx=\int \frac {1}{\left (x - 1\right ) \sqrt [4]{x^{2} - 2 x + 2}}\, dx \]

input
integrate(1/(-1+x)/(x**2-2*x+2)**(1/4),x)
 
output
Integral(1/((x - 1)*(x**2 - 2*x + 2)**(1/4)), x)
 
3.4.44.7 Maxima [F]

\[ \int \frac {1}{(-1+x) \sqrt [4]{2-2 x+x^2}} \, dx=\int { \frac {1}{{\left (x^{2} - 2 \, x + 2\right )}^{\frac {1}{4}} {\left (x - 1\right )}} \,d x } \]

input
integrate(1/(-1+x)/(x^2-2*x+2)^(1/4),x, algorithm="maxima")
 
output
integrate(1/((x^2 - 2*x + 2)^(1/4)*(x - 1)), x)
 
3.4.44.8 Giac [F]

\[ \int \frac {1}{(-1+x) \sqrt [4]{2-2 x+x^2}} \, dx=\int { \frac {1}{{\left (x^{2} - 2 \, x + 2\right )}^{\frac {1}{4}} {\left (x - 1\right )}} \,d x } \]

input
integrate(1/(-1+x)/(x^2-2*x+2)^(1/4),x, algorithm="giac")
 
output
integrate(1/((x^2 - 2*x + 2)^(1/4)*(x - 1)), x)
 
3.4.44.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(-1+x) \sqrt [4]{2-2 x+x^2}} \, dx=\int \frac {1}{\left (x-1\right )\,{\left (x^2-2\,x+2\right )}^{1/4}} \,d x \]

input
int(1/((x - 1)*(x^2 - 2*x + 2)^(1/4)),x)
 
output
int(1/((x - 1)*(x^2 - 2*x + 2)^(1/4)), x)