3.4.79 \(\int \frac {1+x}{(-1+2 x) \sqrt {x+x^4}} \, dx\) [379]

3.4.79.1 Optimal result
3.4.79.2 Mathematica [A] (verified)
3.4.79.3 Rubi [F]
3.4.79.4 Maple [B] (verified)
3.4.79.5 Fricas [B] (verification not implemented)
3.4.79.6 Sympy [F]
3.4.79.7 Maxima [F]
3.4.79.8 Giac [F]
3.4.79.9 Mupad [F(-1)]

3.4.79.1 Optimal result

Integrand size = 20, antiderivative size = 31 \[ \int \frac {1+x}{(-1+2 x) \sqrt {x+x^4}} \, dx=-\frac {2}{3} \text {arctanh}\left (\frac {\frac {1}{3}+\frac {2 x}{3}+\frac {x^2}{3}}{\sqrt {x+x^4}}\right ) \]

output
-2/3*arctanh((1/3+2/3*x+1/3*x^2)/(x^4+x)^(1/2))
 
3.4.79.2 Mathematica [A] (verified)

Time = 10.93 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.00 \[ \int \frac {1+x}{(-1+2 x) \sqrt {x+x^4}} \, dx=-\frac {2}{3} \text {arctanh}\left (\frac {\frac {1}{3}+\frac {2 x}{3}+\frac {x^2}{3}}{\sqrt {x+x^4}}\right ) \]

input
Integrate[(1 + x)/((-1 + 2*x)*Sqrt[x + x^4]),x]
 
output
(-2*ArcTanh[(1/3 + (2*x)/3 + x^2/3)/Sqrt[x + x^4]])/3
 
3.4.79.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x+1}{(2 x-1) \sqrt {x^4+x}} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt {x^3+1} \int -\frac {x+1}{(1-2 x) \sqrt {x} \sqrt {x^3+1}}dx}{\sqrt {x^4+x}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt {x} \sqrt {x^3+1} \int \frac {x+1}{(1-2 x) \sqrt {x} \sqrt {x^3+1}}dx}{\sqrt {x^4+x}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {x^3+1} \int \frac {x+1}{(1-2 x) \sqrt {x^3+1}}d\sqrt {x}}{\sqrt {x^4+x}}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {x^3+1} \int \left (\frac {3}{2 (1-2 x) \sqrt {x^3+1}}-\frac {1}{2 \sqrt {x^3+1}}\right )d\sqrt {x}}{\sqrt {x^4+x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {x^3+1} \left (\frac {3}{4} \int \frac {1}{\left (1-\sqrt {2} \sqrt {x}\right ) \sqrt {x^3+1}}d\sqrt {x}+\frac {3}{4} \int \frac {1}{\left (\sqrt {2} \sqrt {x}+1\right ) \sqrt {x^3+1}}d\sqrt {x}-\frac {\sqrt {x} (x+1) \sqrt {\frac {x^2-x+1}{\left (\left (1+\sqrt {3}\right ) x+1\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\left (1-\sqrt {3}\right ) x+1}{\left (1+\sqrt {3}\right ) x+1}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{4 \sqrt [4]{3} \sqrt {\frac {x (x+1)}{\left (\left (1+\sqrt {3}\right ) x+1\right )^2}} \sqrt {x^3+1}}\right )}{\sqrt {x^4+x}}\)

input
Int[(1 + x)/((-1 + 2*x)*Sqrt[x + x^4]),x]
 
output
$Aborted
 

3.4.79.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.4.79.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(45\) vs. \(2(21)=42\).

Time = 2.76 (sec) , antiderivative size = 46, normalized size of antiderivative = 1.48

method result size
trager \(-\frac {\ln \left (\frac {10 x^{3}+6 x \sqrt {x^{4}+x}-6 x^{2}+6 \sqrt {x^{4}+x}+12 x +1}{\left (-1+2 x \right )^{3}}\right )}{3}\) \(46\)
default \(-\frac {\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \left (1+x \right )^{2} \sqrt {-\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \sqrt {-\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}, \sqrt {\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}{\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right )}}\right )}{\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {x \left (1+x \right ) \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}}+\frac {\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \left (1+x \right )^{2} \sqrt {-\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \sqrt {-\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \left (\operatorname {EllipticF}\left (\sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}, \sqrt {\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}{\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right )}}\right )+2 \operatorname {EllipticPi}\left (\sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}, \frac {\frac {3}{2}+\frac {3 i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}, \sqrt {\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}{\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right )}}\right )\right )}{\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {x \left (1+x \right ) \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}}\) \(491\)
elliptic \(-\frac {\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \left (1+x \right )^{2} \sqrt {-\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \sqrt {-\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}, \sqrt {\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}{\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right )}}\right )}{\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {x \left (1+x \right ) \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}}+\frac {\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \left (1+x \right )^{2} \sqrt {-\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \sqrt {-\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \left (\operatorname {EllipticF}\left (\sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}, \sqrt {\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}{\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right )}}\right )+2 \operatorname {EllipticPi}\left (\sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}, \frac {\frac {3}{2}+\frac {3 i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}, \sqrt {\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}{\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right )}}\right )\right )}{\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {x \left (1+x \right ) \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}}\) \(491\)

input
int((1+x)/(-1+2*x)/(x^4+x)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/3*ln((10*x^3+6*x*(x^4+x)^(1/2)-6*x^2+6*(x^4+x)^(1/2)+12*x+1)/(-1+2*x)^3 
)
 
3.4.79.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 48 vs. \(2 (20) = 40\).

Time = 0.27 (sec) , antiderivative size = 48, normalized size of antiderivative = 1.55 \[ \int \frac {1+x}{(-1+2 x) \sqrt {x+x^4}} \, dx=\frac {1}{3} \, \log \left (\frac {10 \, x^{3} - 6 \, x^{2} - 6 \, \sqrt {x^{4} + x} {\left (x + 1\right )} + 12 \, x + 1}{8 \, x^{3} - 12 \, x^{2} + 6 \, x - 1}\right ) \]

input
integrate((1+x)/(-1+2*x)/(x^4+x)^(1/2),x, algorithm="fricas")
 
output
1/3*log((10*x^3 - 6*x^2 - 6*sqrt(x^4 + x)*(x + 1) + 12*x + 1)/(8*x^3 - 12* 
x^2 + 6*x - 1))
 
3.4.79.6 Sympy [F]

\[ \int \frac {1+x}{(-1+2 x) \sqrt {x+x^4}} \, dx=\int \frac {x + 1}{\sqrt {x \left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (2 x - 1\right )}\, dx \]

input
integrate((1+x)/(-1+2*x)/(x**4+x)**(1/2),x)
 
output
Integral((x + 1)/(sqrt(x*(x + 1)*(x**2 - x + 1))*(2*x - 1)), x)
 
3.4.79.7 Maxima [F]

\[ \int \frac {1+x}{(-1+2 x) \sqrt {x+x^4}} \, dx=\int { \frac {x + 1}{\sqrt {x^{4} + x} {\left (2 \, x - 1\right )}} \,d x } \]

input
integrate((1+x)/(-1+2*x)/(x^4+x)^(1/2),x, algorithm="maxima")
 
output
integrate((x + 1)/(sqrt(x^4 + x)*(2*x - 1)), x)
 
3.4.79.8 Giac [F]

\[ \int \frac {1+x}{(-1+2 x) \sqrt {x+x^4}} \, dx=\int { \frac {x + 1}{\sqrt {x^{4} + x} {\left (2 \, x - 1\right )}} \,d x } \]

input
integrate((1+x)/(-1+2*x)/(x^4+x)^(1/2),x, algorithm="giac")
 
output
integrate((x + 1)/(sqrt(x^4 + x)*(2*x - 1)), x)
 
3.4.79.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1+x}{(-1+2 x) \sqrt {x+x^4}} \, dx=\int \frac {x+1}{\left (2\,x-1\right )\,\sqrt {x^4+x}} \,d x \]

input
int((x + 1)/((2*x - 1)*(x + x^4)^(1/2)),x)
 
output
int((x + 1)/((2*x - 1)*(x + x^4)^(1/2)), x)