3.5.75 \(\int \frac {1-2 k^2 x+k^2 x^2}{x \sqrt {(1-x) x (1-k^2 x)} (-1+k^2 x)} \, dx\) [475]

3.5.75.1 Optimal result
3.5.75.2 Mathematica [A] (verified)
3.5.75.3 Rubi [C] (verified)
3.5.75.4 Maple [A] (verified)
3.5.75.5 Fricas [A] (verification not implemented)
3.5.75.6 Sympy [F]
3.5.75.7 Maxima [F]
3.5.75.8 Giac [F]
3.5.75.9 Mupad [B] (verification not implemented)

3.5.75.1 Optimal result

Integrand size = 47, antiderivative size = 38 \[ \int \frac {1-2 k^2 x+k^2 x^2}{x \sqrt {(1-x) x \left (1-k^2 x\right )} \left (-1+k^2 x\right )} \, dx=-\frac {2 \sqrt {x+\left (-1-k^2\right ) x^2+k^2 x^3}}{x \left (-1+k^2 x\right )} \]

output
-2*(x+(-k^2-1)*x^2+k^2*x^3)^(1/2)/x/(k^2*x-1)
 
3.5.75.2 Mathematica [A] (verified)

Time = 11.15 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.55 \[ \int \frac {1-2 k^2 x+k^2 x^2}{x \sqrt {(1-x) x \left (1-k^2 x\right )} \left (-1+k^2 x\right )} \, dx=-\frac {2 (-1+x)}{\sqrt {(-1+x) x \left (-1+k^2 x\right )}} \]

input
Integrate[(1 - 2*k^2*x + k^2*x^2)/(x*Sqrt[(1 - x)*x*(1 - k^2*x)]*(-1 + k^2 
*x)),x]
 
output
(-2*(-1 + x))/Sqrt[(-1 + x)*x*(-1 + k^2*x)]
 
3.5.75.3 Rubi [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 2 in optimal.

Time = 1.51 (sec) , antiderivative size = 297, normalized size of antiderivative = 7.82, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.128, Rules used = {2467, 25, 2035, 1395, 7293, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {k^2 x^2-2 k^2 x+1}{x \sqrt {(1-x) x \left (1-k^2 x\right )} \left (k^2 x-1\right )} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt {k^2 x^2-\left (k^2+1\right ) x+1} \int -\frac {x^2 k^2-2 x k^2+1}{x^{3/2} \left (1-k^2 x\right ) \sqrt {k^2 x^2-\left (k^2+1\right ) x+1}}dx}{\sqrt {(1-x) x \left (1-k^2 x\right )}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt {x} \sqrt {k^2 x^2-\left (k^2+1\right ) x+1} \int \frac {x^2 k^2-2 x k^2+1}{x^{3/2} \left (1-k^2 x\right ) \sqrt {k^2 x^2-\left (k^2+1\right ) x+1}}dx}{\sqrt {(1-x) x \left (1-k^2 x\right )}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {2 \sqrt {x} \sqrt {k^2 x^2-\left (k^2+1\right ) x+1} \int \frac {x^2 k^2-2 x k^2+1}{x \left (1-k^2 x\right ) \sqrt {k^2 x^2-\left (k^2+1\right ) x+1}}d\sqrt {x}}{\sqrt {(1-x) x \left (1-k^2 x\right )}}\)

\(\Big \downarrow \) 1395

\(\displaystyle -\frac {2 \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \int \frac {x^2 k^2-2 x k^2+1}{\sqrt {1-x} x \left (1-k^2 x\right )^{3/2}}d\sqrt {x}}{\sqrt {(1-x) x \left (1-k^2 x\right )}}\)

\(\Big \downarrow \) 7293

\(\displaystyle -\frac {2 \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \int \left (\frac {x k^2}{\sqrt {1-x} \left (1-k^2 x\right )^{3/2}}-\frac {2 k^2}{\sqrt {1-x} \left (1-k^2 x\right )^{3/2}}+\frac {1}{\sqrt {1-x} x \left (1-k^2 x\right )^{3/2}}\right )d\sqrt {x}}{\sqrt {(1-x) x \left (1-k^2 x\right )}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 \sqrt {1-x} \sqrt {x} \sqrt {1-k^2 x} \left (\operatorname {EllipticF}\left (\arcsin \left (\sqrt {x}\right ),k^2\right )-\frac {2 k^2 E\left (\arcsin \left (\sqrt {x}\right )|k^2\right )}{1-k^2}+\frac {k E\left (\arcsin \left (k \sqrt {x}\right )|\frac {1}{k^2}\right )}{1-k^2}-\frac {\left (1-2 k^2\right ) E\left (\arcsin \left (\sqrt {x}\right )|k^2\right )}{1-k^2}-\frac {k^2 \sqrt {1-x} \sqrt {x}}{\left (1-k^2\right ) \sqrt {1-k^2 x}}-\frac {k^2 \sqrt {1-x}}{\left (1-k^2\right ) \sqrt {x} \sqrt {1-k^2 x}}-\frac {\left (1-2 k^2\right ) \sqrt {1-x} \sqrt {1-k^2 x}}{\left (1-k^2\right ) \sqrt {x}}+\frac {2 k^4 \sqrt {1-x} \sqrt {x}}{\left (1-k^2\right ) \sqrt {1-k^2 x}}\right )}{\sqrt {(1-x) x \left (1-k^2 x\right )}}\)

input
Int[(1 - 2*k^2*x + k^2*x^2)/(x*Sqrt[(1 - x)*x*(1 - k^2*x)]*(-1 + k^2*x)),x 
]
 
output
(-2*Sqrt[1 - x]*Sqrt[x]*Sqrt[1 - k^2*x]*(-((k^2*Sqrt[1 - x])/((1 - k^2)*Sq 
rt[x]*Sqrt[1 - k^2*x])) - (k^2*Sqrt[1 - x]*Sqrt[x])/((1 - k^2)*Sqrt[1 - k^ 
2*x]) + (2*k^4*Sqrt[1 - x]*Sqrt[x])/((1 - k^2)*Sqrt[1 - k^2*x]) - ((1 - 2* 
k^2)*Sqrt[1 - x]*Sqrt[1 - k^2*x])/((1 - k^2)*Sqrt[x]) - (2*k^2*EllipticE[A 
rcSin[Sqrt[x]], k^2])/(1 - k^2) - ((1 - 2*k^2)*EllipticE[ArcSin[Sqrt[x]], 
k^2])/(1 - k^2) + (k*EllipticE[ArcSin[k*Sqrt[x]], k^(-2)])/(1 - k^2) + Ell 
ipticF[ArcSin[Sqrt[x]], k^2]))/Sqrt[(1 - x)*x*(1 - k^2*x)]
 

3.5.75.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 1395
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_)*((d_) + (e_.)*( 
x_)^(n_))^(q_.), x_Symbol] :> Simp[(a + b*x^n + c*x^(2*n))^FracPart[p]/((d 
+ e*x^n)^FracPart[p]*(a/d + c*(x^n/e))^FracPart[p])   Int[u*(d + e*x^n)^(p 
+ q)*(a/d + (c/e)*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && E 
qQ[n2, 2*n] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] &&  !(EqQ[q, 
1] && EqQ[n, 2])
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.5.75.4 Maple [A] (verified)

Time = 0.97 (sec) , antiderivative size = 20, normalized size of antiderivative = 0.53

method result size
gosper \(-\frac {2 \left (x -1\right )}{\sqrt {\left (x -1\right ) x \left (k^{2} x -1\right )}}\) \(20\)
trager \(-\frac {2 \sqrt {k^{2} x^{3}-k^{2} x^{2}-x^{2}+x}}{x \left (k^{2} x -1\right )}\) \(39\)
risch \(\frac {2 \left (x -1\right ) \left (k^{2} x -1\right )}{\sqrt {\left (x -1\right ) x \left (k^{2} x -1\right )}}-\frac {2 x \left (x -1\right ) k^{2}}{\sqrt {\left (x -1\right ) x \left (k^{2} x -1\right )}}\) \(51\)
elliptic \(\frac {2 k^{2} x^{2}-2 k^{2} x -2 x +2}{\sqrt {x \left (k^{2} x^{2}-k^{2} x -x +1\right )}}-\frac {2 \left (k^{2} x^{2}-k^{2} x \right )}{\sqrt {\left (x -\frac {1}{k^{2}}\right ) \left (k^{2} x^{2}-k^{2} x \right )}}\) \(84\)
default \(-\frac {2 \sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}\, \sqrt {\frac {x -1}{\frac {1}{k^{2}}-1}}\, \sqrt {k^{2} x}\, \operatorname {EllipticF}\left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right )}{k^{2} \sqrt {k^{2} x^{3}-k^{2} x^{2}-x^{2}+x}}+\frac {2 k^{2} x^{2}-2 k^{2} x -2 x +2}{\sqrt {x \left (k^{2} x^{2}-k^{2} x -x +1\right )}}+\frac {2 \sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}\, \sqrt {\frac {x -1}{\frac {1}{k^{2}}-1}}\, \sqrt {k^{2} x}\, \left (\left (\frac {1}{k^{2}}-1\right ) \operatorname {EllipticE}\left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right )+\operatorname {EllipticF}\left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right )\right )}{\sqrt {k^{2} x^{3}-k^{2} x^{2}-x^{2}+x}}+\left (-k^{2}+1\right ) \left (\frac {2 k^{2} x^{2}-2 k^{2} x}{\left (k^{2}-1\right ) \sqrt {\left (x -\frac {1}{k^{2}}\right ) \left (k^{2} x^{2}-k^{2} x \right )}}-\frac {2 \left (-1+\frac {k^{2}}{k^{2}-1}\right ) \sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}\, \sqrt {\frac {x -1}{\frac {1}{k^{2}}-1}}\, \sqrt {k^{2} x}\, \operatorname {EllipticF}\left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right )}{k^{2} \sqrt {k^{2} x^{3}-k^{2} x^{2}-x^{2}+x}}+\frac {2 \sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}\, \sqrt {\frac {x -1}{\frac {1}{k^{2}}-1}}\, \sqrt {k^{2} x}\, \left (\left (\frac {1}{k^{2}}-1\right ) \operatorname {EllipticE}\left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right )+\operatorname {EllipticF}\left (\sqrt {-\left (x -\frac {1}{k^{2}}\right ) k^{2}}, \sqrt {\frac {1}{k^{2} \left (\frac {1}{k^{2}}-1\right )}}\right )\right )}{\left (k^{2}-1\right ) \sqrt {k^{2} x^{3}-k^{2} x^{2}-x^{2}+x}}\right )\) \(548\)

input
int((k^2*x^2-2*k^2*x+1)/x/((1-x)*x*(-k^2*x+1))^(1/2)/(k^2*x-1),x,method=_R 
ETURNVERBOSE)
 
output
-2*(x-1)/((x-1)*x*(k^2*x-1))^(1/2)
 
3.5.75.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.95 \[ \int \frac {1-2 k^2 x+k^2 x^2}{x \sqrt {(1-x) x \left (1-k^2 x\right )} \left (-1+k^2 x\right )} \, dx=-\frac {2 \, \sqrt {k^{2} x^{3} - {\left (k^{2} + 1\right )} x^{2} + x}}{k^{2} x^{2} - x} \]

input
integrate((k^2*x^2-2*k^2*x+1)/x/((1-x)*x*(-k^2*x+1))^(1/2)/(k^2*x-1),x, al 
gorithm="fricas")
 
output
-2*sqrt(k^2*x^3 - (k^2 + 1)*x^2 + x)/(k^2*x^2 - x)
 
3.5.75.6 Sympy [F]

\[ \int \frac {1-2 k^2 x+k^2 x^2}{x \sqrt {(1-x) x \left (1-k^2 x\right )} \left (-1+k^2 x\right )} \, dx=\int \frac {k^{2} x^{2} - 2 k^{2} x + 1}{x \sqrt {x \left (x - 1\right ) \left (k^{2} x - 1\right )} \left (k^{2} x - 1\right )}\, dx \]

input
integrate((k**2*x**2-2*k**2*x+1)/x/((1-x)*x*(-k**2*x+1))**(1/2)/(k**2*x-1) 
,x)
 
output
Integral((k**2*x**2 - 2*k**2*x + 1)/(x*sqrt(x*(x - 1)*(k**2*x - 1))*(k**2* 
x - 1)), x)
 
3.5.75.7 Maxima [F]

\[ \int \frac {1-2 k^2 x+k^2 x^2}{x \sqrt {(1-x) x \left (1-k^2 x\right )} \left (-1+k^2 x\right )} \, dx=\int { \frac {k^{2} x^{2} - 2 \, k^{2} x + 1}{{\left (k^{2} x - 1\right )} \sqrt {{\left (k^{2} x - 1\right )} {\left (x - 1\right )} x} x} \,d x } \]

input
integrate((k^2*x^2-2*k^2*x+1)/x/((1-x)*x*(-k^2*x+1))^(1/2)/(k^2*x-1),x, al 
gorithm="maxima")
 
output
integrate((k^2*x^2 - 2*k^2*x + 1)/((k^2*x - 1)*sqrt((k^2*x - 1)*(x - 1)*x) 
*x), x)
 
3.5.75.8 Giac [F]

\[ \int \frac {1-2 k^2 x+k^2 x^2}{x \sqrt {(1-x) x \left (1-k^2 x\right )} \left (-1+k^2 x\right )} \, dx=\int { \frac {k^{2} x^{2} - 2 \, k^{2} x + 1}{{\left (k^{2} x - 1\right )} \sqrt {{\left (k^{2} x - 1\right )} {\left (x - 1\right )} x} x} \,d x } \]

input
integrate((k^2*x^2-2*k^2*x+1)/x/((1-x)*x*(-k^2*x+1))^(1/2)/(k^2*x-1),x, al 
gorithm="giac")
 
output
integrate((k^2*x^2 - 2*k^2*x + 1)/((k^2*x - 1)*sqrt((k^2*x - 1)*(x - 1)*x) 
*x), x)
 
3.5.75.9 Mupad [B] (verification not implemented)

Time = 4.91 (sec) , antiderivative size = 28, normalized size of antiderivative = 0.74 \[ \int \frac {1-2 k^2 x+k^2 x^2}{x \sqrt {(1-x) x \left (1-k^2 x\right )} \left (-1+k^2 x\right )} \, dx=-\frac {2\,\sqrt {x\,\left (k^2\,x-1\right )\,\left (x-1\right )}}{x\,\left (k^2\,x-1\right )} \]

input
int((k^2*x^2 - 2*k^2*x + 1)/(x*(k^2*x - 1)*(x*(k^2*x - 1)*(x - 1))^(1/2)), 
x)
 
output
-(2*(x*(k^2*x - 1)*(x - 1))^(1/2))/(x*(k^2*x - 1))